
Top 5 Considerations When Evaluating
NoSQL Databases
February 2015

A MongoDB White Paper



Table of Contents
1Introduction

2Data Model
2Document Model
2Graph Model
2Key-Value and Wide Column Models

3Query Model
3Document Database
3Graph Database
3Key Value and Wide Column Databases

4Consistency Model
4Consistent Systems
4Eventually Consistent Systems

4APIs
5Idiomatic Drivers
5Thrift or RESTful APIs
5Pluggable Storage API

5Commercial Support and Community Strength
5Commercial Support
5Community Strength

6Conclusion

6We Can Help



Introduction

Relational databases have a long-standing position in most

organizations, and for good reason. Relational databases

underpin legacy applications that meet current business

needs; they are supported by an extensive ecosystem of

tools; and there is a large pool of labor qualified to

implement and maintain these systems.

But companies are increasingly considering alternatives to

legacy relational infrastructure. In some cases the

motivation is technical — such as a need to scale or

perform beyond the capabilities of their existing systems —

while in other cases companies are driven by the desire to

identify viable alternatives to expensive proprietary

software. A third motivation is agility or speed of

development, as companies look to adapt to the market

more quickly and embrace agile development

methodologies.

These drivers apply both to analytical and transactional

applications. Companies are shifting workloads to Hadoop

for their offline, analytical workloads, and they are building

online, operational applications with a new class of data

management technologies called "NoSQL", or "Not Only

SQL", such as MongoDB.

Development teams have a strong say in the technology

selection process. This community tends to find that the

relational data model is not well aligned with the needs of

their applications. Consider:

• Developers are working with new data types —

structured, semi-structured, unstructured and

polymorphic data — and massive volumes of it.

• Long gone is the twelve-to-eighteen month waterfall

development cycle. Now small teams work in agile

sprints, iterating quickly and pushing code every week

or two, even every day.

• Object-oriented programming is the norm, and

developers need a data model that aligns with this

approach, that is easy to use and that provides flexibility.

• Organizations are now turning to scale-out architectures

using commodity servers and cloud computing instead

of large monolithic architectures. NoSQL systems share

several key characteristics. When compared to relational

databases,

1



NoSQL systems are more scalable and provide superior

performance. As companies evaluate NoSQL products,

they should consider 5 critical dimensions to make the

right choice for their applications and their businesses. In

this Introduction 2 paper, we describe these dimensions

and show why MongoDB is the most widely used NoSQL

database in the market.

Data Model

The primary way in which NoSQL databases differ from

relational databases is the data model. Although there are

arguably dozens of NoSQL databases, they primarily fall

into one of the following three categories:

Document Model

Whereas relational databases store data in rows and

columns, document databases store data in documents.

These documents typically use a structure that is like

JSON (JavaScript Object Notation), a format popular

among developers. Documents provide an intuitive and

natural way to model data that is closely aligned with

object-oriented programming — each document is

effectively an object. Documents contain one or more

fields, where each field contains a typed value, such as a

string, date, binary or array. Rather than spreading out a

record across multiple columns and tables, each record

and its associated data are typically stored together in a

single document. This simplifies data access and reduces

or even eliminates the need for joins and complex

transactions.

In a document database, the notion of a schema is

dynamic: each document can contain different fields. This

flexibility can be particularly helpful for modeling

unstructured and polymorphic data. It also makes it easier

to evolve an application during development, such as

adding new fields. Additionally, document databases

generally provide the query robustness that developers

have come to expect from relational databases. In

particular, data can be queried based on any fields in a

document.

ApplicApplications:ations: Document databases are general purpose,

useful for a wide variety of applications due to the flexibility

of the data model, the ability to query on any field and the

natural mapping of the document data model to objects in

modern programming languages.

Examples:Examples: MongoDB and CouchDB.

Graph Model

Graph databases use graph structures with nodes, edges

and properties to represent data. In essence, data is

modeled as a network of relationships between specific

elements. While the graph model may be counter-intuitive

and takes some time to understand, it can be used broadly

for a number of applications. Its main appeal is that it

makes it easier to model relationships between entities in

an application.

ApplicApplications:ations: Graph databases are useful in cases where

relationships are core to the application, like social

networks.

Examples:Examples: Neo4j and HyperGraphDB.

Key-Value and Wide Column Models

From a data model perspective, key-value stores are the

most basic type of NoSQL database. Every item in the

database is stored as an attribute name, or key, together

with its value. The value, however, is entirely opaque to the

system; data can only be queried by the key. This model

can be useful for representing polymorphic and

unstructured data, as the database does not enforce a set

schema across key-value pairs.

Wide column stores, or column family stores, use a sparse,

distributed multi-dimensional sorted map to store data.

Each record can vary in the number of columns that are

stored, and columns can be nested inside other columns

called super columns. Columns can be grouped together

for access in column families, or columns can be spread

across multiple column families. Data is retrieved by

primary key per column family.

ApplicApplications:ations: Key value stores and wide column stores

are useful for a narrow set of applications that only query

data by a single key value. The appeal of these systems is

their performance and scalability, which can be highly

optimized due to the simplicity of the data access patterns.

2



Examples:Examples: Riak and Redis (Key-Value); HBase and

Cassandra (Wide Column).

TAKEAWAYS

• All of these data models provide schema flexibility.

• The key-value and wide-column data model is opaque in

the system - only the primary key can be queried.

• The document data model has the broadest applicability.

• The document data model is the most natural and most

productive because it maps directly to objects in

modern object-oriented languages.

• The wide column model provides more granular access

to data than the key value model, but less flexibility than

the document data model.

Query Model

Each application has its own query requirements. In some

cases, it may be acceptable to have a very basic query

model in which the application only accesses records

based on a primary key. For most applications, however, it is

important to have the ability to query based on several

different values in each record. For instance, an application

that stores data about customers may need to look up not

only specific customers, but also specific companies, or

customers by a certain deal size, or aggregations of

customer types by zip code or state.

It is also common for applications to update records,

including one or more individual fields. To satisfy these

requirements, the database needs to be able to query data

based on secondary indexes. In these cases, a document

database may be the most appropriate solution.

Document Database

Document databases provide the ability to query on any

field within a document. Some products, such as

MongoDB, provide a rich set of indexing options to

optimize a wide variety of queries, including compound

indexes, sparse indexes, time to live (TTL) indexes, unique

indexes, text indexes, geospatial indexes and others.

Furthermore, some of these products provide the ability to

analyze data in place. MongoDB, for instance, provides

both the Aggregation Framework for providing real-time

analytics (along the lines of the SQL GROUP BY

functionality), and a native MapReduce implementation for

sophisticated analyses. Regarding updates, MongoDB

provides find and modify capabilities so that values in

documents can be updated in a single statement to the

database rather than making multiple round trips.

Graph Database

These systems tend to provide rich query models where

simple and complex relationships can be interrogated to

make direct and indirect inferences about the data in the

system. Relationship-type analysis tends to be very

efficient in these systems, whereas other types of analysis

may be less optimal.

Key Value and Wide Column Databases

These systems provide the ability to retrieve and update

data based only on a primary key. For querying on other

values, users are encouraged to maintain their own

indexes. Some products provide limited support for

secondary indexes, but with several caveats. To perform an

update in these systems, two round trips may be

necessary: first find the record, then update it. In these

systems, the update may be implemented as a complete

rewrite of the record whether a few bytes have changed or

the entire record.

TAKEAWAYS

• The biggest difference between NoSQL systems lies in

the ability to query data efficiently.

• Document databases provide the richest query

functionality, which allows them to address a wide

variety of applications.

• Key-value stores and wide column stores provide a

single means of accessing data: by primary key. They

offer very limited query functionality and may impose

additional development costs and application-level

requirements to provide more than the most basic query

features.

3



Consistency Model

NoSQL systems typically maintain multiple copies of the

data for availability and scalability purposes. In these

architectures, there different guarantees regarding the

consistency of the data across copies. NoSQL systems

tend to be consistent or eventually consistent.

With a consistent system, writes by the application are

immediately visible in subsequent queries. With an

eventually consistent system writes are not immediately

visible. As an example, when reflecting inventory levels for

products in a product catalog, with a consistent system

each query will see the current inventory as inventory levels

are updated by the application, whereas with an eventually

consistent system the inventory levels may not be accurate

for a query at a given time, but will eventually become

accurate. For this reason application code tends to be

somewhat different for eventually consistent systems -

rather than updating the inventory by taking the current

inventory and subtracting one, for example, developers are

encouraged to issue idempotent queries that explicitly set

the inventory level.

TAKEAWAYS

• Most applications and development teams expect

consistent systems.

• Different consistency models pose different trade-offs

for applications in the areas of consistency and

availability.

• MongoDB provides tunable consistency, defined at the

query level.

• Eventually consistent systems provide some advantages

for writes at the cost of making reads and updates more

complex.

Consistent Systems

Each application has different requirements for data

consistency. For many applications, it is imperative that the

data be consistent at all times. As development teams have

worked under a model of consistency with relational

databases for decades, this approach is more natural and

familiar. In other cases, eventual consistency is an

acceptable trade-off for the flexibility it allows in the

system’s availability.

Document databases and graph databases can be

consistent or eventually consistent. MongoDB provides

tunable consistency. By default, data is consistent — all

writes and reads go to the primary copy of the data. As an

option, read queries can be issued against secondary

copies where data is eventually consistent; the consistency

choice is made at the query level.

Eventually Consistent Systems

With eventually consistent systems, there is a period of

time in which all copies of the data are not synchronized.

This may be acceptable for read-only applications and data

stores that do not change often, like historical archives. By

the same token, it may also be appropriate for high-write

use cases in which the database is capturing information

like logs, which will only be read at a later point in time.

Key-value and wide column stores are typically eventually

consistent.

Eventually consistent systems must be able to

accommodate conflicting updates in individual records.

Because writes can be applied to any copy of the data, it is

possible and not uncommon for writes to conflict with one

another. Some systems like Riak use vector clocks to

determine the ordering of events and to ensure that the

most recent operation wins in the case of a conflict. Other

systems like CouchDB retain all conflicting values and

allow the user to resolve the conflict. Another approach,

followed by Cassandra, is simply to assume the greatest

value is the correct one. For these reasons, writes tend to

perform well in eventually consistent systems, but updates

can involve trade-offs that complicate the application

significantly.

APIs

There is no standard for interfacing with NoSQL systems.

Each system presents different designs and capabilities for

application development teams. The maturity of the API

can have major implications for the time and cost required

to develop and maintain the underlying NoSQL system.

4



Idiomatic Drivers

There are a number of popular programming languages,

and each provides different paradigms for working with

data and services. Idiomatic drivers are created by

development teams that are experts in the given language

and that know how programmers 5 prefer to work within

that language. This approach can also benefit from its

ability to leverage specific features in a programming

language that might provide efficiencies for accessing and

processing data.

For programmers, idiomatic drivers are easier to learn and

use, and they reduce the onboarding time for teams to

begin working with the underlying system. For example,

idiomatic drivers provide direct interfaces to set and get

documents or fields within documents. With other types of

interfaces it may be necessary to retrieve and parse entire

documents and navigate to specific values in order to set

or get a field.

MongoDB supports idiomatic drivers in over a dozen

languages: Java, .NET, Ruby, Node.js, Perl, Python, PHP, C,

C++, Erlang, Javascript, Haskell and Scala. Other drivers

are supported by the community.

Thrift or RESTful APIs

Some systems provide RESTful interfaces. This approach

has the appeal of simplicity and familiarity, but it relies on

the inherent latencies associated with HTTP. It also shifts

the burden of building an interface to the developers; and

this interface is likely to be inconsistent with the rest of

their programming interfaces. Similarly, some systems

provide a Thrift interface, a very low level paradigm that

shifts the burden to developers to develop more abstract

interfaces within their applications.

Pluggable Storage API

A pluggable storage API allows organizations to choose

alternative storage engines optimized for different

workloads. These APIs should be designed to support all

the native features of the database so that teams

leveraging an alternative hardware architecture are not

forced to compromise on other features.

MongoDB 3.0 introduces a new storage engine API and

two supported storage engines, both of which can coexist

within a single MongoDB replica set, making it easy to

evaluate and migrate between them:

• The default MMAPv1 engine, an improved version of

the engine used in prior MongoDB releases.

• The new WiredTiger storage engine. For many

applications, WiredTiger's more granular concurrency

control and native compression will provide significant

benefits in the areas of lower storage costs, greater

hardware utilization, and more predictable performance.

Users can leverage the same MongoDB query language,

data model, scaling, security and operational tooling across

different applications, each powered by different pluggable

MongoDB storage engines. Other engines are under

development by MongoDB and members of the MongoDB

ecosystem.

TAKEAWAYS

• The maturity and functionality of APIs vary significantly

across NoSQL products.

• MongoDB’s idiomatic drivers minimize onboarding time

for new developers and simplify application

development.

• Through the use of a pluggable storage architecture,

MongoDB can be extended with new capabilities, and

configured for optimal use of specific hardware

architectures.

Commercial Support and
Community Strength

Choosing a database is a major investment. Once an

application has been built on a given database, it is costly

and challenging to migrate it to a different database.

Companies usually invest in a small number of core

technologies so they can develop expertise, integrations

and best practices that can be amortized across many

projects. NoSQL systems are relatively new, and while

5



there are many options in the market, a small number of

products will stand the test of time.

Commercial Support

Users should consider the health of the company or project

when evaluating a database. It is important not only that

the product continues to exist, but also to evolve and to

provide new features. Having a strong, experienced

support organization capable of providing services globally

is another relevant consideration.

TAKEAWAYS

• Commercial backing and support is an important part of

evaluating NoSQL products.

• MongoDB has the largest commercial backing; the

largest and most active community; support teams in

New York, Palo Alto, Dublin, and Sydney; and extensive

documentation.

Community Strength

There are significant advantages of having a strong

community around a technology, particularly databases. A

database with a strong community of users makes it easier

to find and hire developers that are familiar with the

product. It makes it easier to find information,

documentation and code samples. It also helps

organizations retain key technical talent. Lastly, a strong

community encourages other technology vendors to

develop integrations and to participate in the ecosystem.

Conclusion

As the technology landscape evolves, organizations

increasingly find the need to evaluate new databases to

support changing application and business requirements.

The media hype around NoSQL databases and the

commensurate lack of clarity in the market makes it

important for organizations to understand the differences

between the available solutions. As discussed in this paper,

key criteria to consider when evaluating these technologies

are the data model, query model, consistency model and

APIs, as well as commercial support and community

strength. Many organizations find that document databases

such as MongoDB are best suited to meet these criteria,

though we encourage technology decision makers to

evaluate these considerations for themselves.

We Can Help

We are the MongoDB experts. Over 2,000 organizations

rely on our commercial products, including startups and

more than a third of the Fortune 100. We offer software

and services to make your life easier:

MongoDB Enterprise Advanced is the best way to run

MongoDB in your data center. It’s a finely-tuned package

of advanced software, support, certifications, and other

services designed for the way you do business.

MongoDB Management Service (MMS) is the easiest way

to run MongoDB in the cloud. It makes MongoDB the

system you worry about the least and like managing the

most.

Production Support helps keep your system up and

running and gives you peace of mind. MongoDB engineers

help you with production issues and any aspect of your

project.

Development Support helps you get up and running quickly.

It gives you a complete package of software and services

for the early stages of your project.

MongoDB Consulting packages get you to production

faster, help you tune performance in production, help you

scale, and free you up to focus on your next release.

MongoDB Training helps you become a MongoDB expert,

from design to operating mission-critical systems at scale.

Whether you’re a developer, DBA, or architect, we can

make you better at MongoDB.

6

https://www.mongodb.com/products/mongodb-enterprise-advanced
https://mms.mongodb.com
https://www.mongodb.com/products/production-support
https://www.mongodb.com/products/development-support
https://www.mongodb.com/products/consulting
https://university.mongodb.com/


Resources

For more information, please visit mongodb.com or contact

us at sales@mongodb.com.

Case Studies (mongodb.com/customers)

Presentations (mongodb.com/presentations)

Free Online Training (university.mongodb.com)

Webinars and Events (mongodb.com/events)

Documentation (docs.mongodb.org)

MongoDB Enterprise Download (mongodb.com/download)

New York • Palo Alto • Washington, D.C. • London • Dublin • Barcelona • Sydney • Tel Aviv
US 866-237-8815 • INTL +1-650-440-4474 • info@mongodb.com
© 2015 MongoDB, Inc. All rights reserved.

7

http://www.mongodb.com
mailto:sales@mongodb.com
http://mongodb.com/customers
http://mongodb.com/presentations
http://university.mongodb.com
http://mongodb.com/events
http://docs.mongodb.org
http://mongodb.com/download

	Table of Contents
	Introduction1
	Data Model2
	Document Model2
	Graph Model2
	Key-Value and Wide Column Models2

	Query Model3
	Document Database3
	Graph Database3
	Key Value and Wide Column Databases3

	Consistency Model4
	Consistent Systems4
	Eventually Consistent Systems4

	APIs4
	Idiomatic Drivers5
	Thrift or RESTful APIs5
	Pluggable Storage API5

	Commercial Support and Community Strength5
	Commercial Support5
	Community Strength5

	Conclusion6
	We Can Help6
	Introduction
	Data Model
	Document Model
	Graph Model
	Key-Value and Wide Column Models

	Query Model
	Document Database
	Graph Database
	Key Value and Wide Column Databases

	Consistency Model
	Consistent Systems
	Eventually Consistent Systems

	APIs
	Idiomatic Drivers
	Thrift or RESTful APIs
	Pluggable Storage API

	Commercial Support and Community Strength
	Commercial Support
	Community Strength

	Conclusion
	We Can Help
	Resources

