
Table of ContentsTable of Contents

 Overview

 What is DocumentDB?

 Core concepts

 Global distribution

 Scenarios

 Common use cases

 Going social with DocumentDB

 Multi-tenancy

 Get Started

 Write your first app

 .NET console app

 .NET Core console app

 Node.js console app

 C++ console app

 Build a web app

 .NET web app

 Node.js web app

 Java web app

 Python Flask web app

 Develop Locally

 FAQ

 How To

 Plan

 Storage and performance

 Partitioning and scaling

 Consistency

 NoSQL vs SQL

 Manage

 Import your data

javascript:void(0)
javascript:void(0)
http://blogs.msdn.com/b/documentdb/archive/2014/12/03/scaling-a-multi-tenant-application-with-azure-documentdb.aspx
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

 Model your data

 Use geospatial data

 Develop for multi-regions

 Expire data automatically

 Customize your indexes

 Secure access to data

 Back up and restore

 Performance levels

 Resource quotas

 Increase quotas

 Request units

 Azure CLI and Azure Resource Manager

 Firewall support

 Supercharge your account

 Develop

 SQL query

 Stored procedures, triggers, and UDFs

 Performance testing

 Performance tips

 DocumentDB for MongoDB developers

 Use the portal

 Create a database account

 Create a collection

 Add global replication

 Add and edit documents

 Query documents

 Manage an account

 Monitor an account

 Manage scripts

 Troubleshooting tips

 Integrate

 Deploy a website with Azure App Service

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

 Application logging with Logic Apps

 Bind to Azure Functions

 Analyze data with Hadoop

 Integrate with Azure Search

 Move data with Azure Data Factory

 Analyze real-time data with Azure Stream Analytics

 Get notifications with Logic Apps

 Process sensor data in real time

 Visualize your data with Power BI

 Reference

 Java SDK

 .NET SDK

 .NET Core SDK

 .NET samples

 Node.js SDK

 Node.js samples

 Python SDK

 Python samples

 SQL

 SQL grammar cheat sheet

 REST

 REST Resource Provider

 Resources

 Pricing

 MSDN forum

 Stack Overflow

 Videos

 Service updates

 Community portal

 Query Playground

 Schema agnostic indexing paper

 Data consistency explained through baseball

javascript:void(0)
https://msdn.microsoft.com/library/azure/dn782250.aspx
file:///rest/api/documentdb/
file:///rest/api/documentdbresourceprovider/
javascript:void(0)
https://azure.microsoft.com/pricing/details/documentdb/
https://social.msdn.microsoft.com/forums/azure/en-US/home
http://stackoverflow.com/questions/tagged/azure-documentdb
https://azure.microsoft.com/documentation/videos/index/
https://azure.microsoft.com/updates/
https://www.documentdb.com/sql/demo
http://www.vldb.org/pvldb/vol8/p1668-shukla.pdf
http://research.microsoft.com/apps/pubs/default.aspx

 Book: Using Microsoft Azure DocumentDB in a Node.js Application

 Learning path

https://go.microsoft.com/fwlink/
https://azure.microsoft.com/documentation/learning-paths/documentdb/

mimig • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • arramac • Andrew Liu • dabutvin • v-aljenk

Introduction to DocumentDB: A NoSQL JSON
Database
11/22/2016 • 7 min to read • Edit on GitHub

Contributors

What is DocumentDB?

How can I learn about DocumentDB?

What capabilities and key features does DocumentDB offer?

DocumentDB is a fully managed NoSQL database service built for fast and predictable performance, high

availability, elastic scaling, global distribution, and ease of development. As a schema-free NoSQL database,

DocumentDB provides rich and familiar SQL query capabilities with consistent low latencies on JSON data -

ensuring that 99% of your reads are served under 10 milliseconds and 99% of your writes are served under 15

milliseconds. These unique benefits make DocumentDB a great fit for web, mobile, gaming, and IoT, and many

other applications that need seamless scale and global replication.

A quick way to learn about DocumentDB and see it in action is to follow these three steps:

1. Watch the two minute What is DocumentDB? video, which introduces the benefits of using DocumentDB.

2. Watch the three minute Create DocumentDB on Azure video, which highlights how to get started with

DocumentDB by using the Azure Portal.

3. Visit the Query Playground, where you can walk through different activities to learn about the rich querying

functionality available in DocumentDB. Then, head over to the Sandbox tab and run your own custom SQL

queries and experiment with DocumentDB.

Then, return to this article, where we'll dig in deeper.

Azure DocumentDB offers the following key capabilities and benefits:

Elastically scalable throughput and storage:Elastically scalable throughput and storage: Easily scale up or scale down your DocumentDB JSON

database to meet your application needs. Your data is stored on solid state disks (SSD) for low predictable

latencies. DocumentDB supports containers for storing JSON data called collections that can scale to virtually

unlimited storage sizes and provisioned throughput. You can elastically scale DocumentDB with predictable

performance seamlessly as your application grows.

Multi-region replication:Multi-region replication: DocumentDB transparently replicates your data to all regions you've associated

with your DocumentDB account, enabling you to develop applications that require global access to data while

providing tradeoffs between consistency, availability and performance, all with corresponding guarantees.

DocumentDB provides transparent regional failover with multi-homing APIs, and the ability to elastically scale

throughput and storage across the globe. Learn more in Distribute data globally with DocumentDB.

Ad hoc quer ies w ith familiar SQL syntax:Ad hoc quer ies w ith familiar SQL syntax: Store heterogeneous JSON documents within DocumentDB and

query these documents through a familiar SQL syntax. DocumentDB utilizes a highly concurrent, lock free, log

structured indexing technology to automatically index all document content. This enables rich real-time queries

without the need to specify schema hints, secondary indexes, or views. Learn more in Query DocumentDB.

JavaScr ipt execution w ithin the database:JavaScr ipt execution w ithin the database: Express application logic as stored procedures, triggers, and

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-introduction.md
https://github.com/mimig1
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/arramac
https://github.com/aliuy
https://github.com/dabutvin
https://github.com/v-aljenk
https://azure.microsoft.com/documentation/videos/what-is-azure-documentdb/
https://azure.microsoft.com/documentation/videos/create-documentdb-on-azure/
http://www.documentdb.com/sql/demo

 How does DocumentDB manage data?

user defined functions (UDFs) using standard JavaScript. This allows your application logic to operate over data

without worrying about the mismatch between the application and the database schema. DocumentDB

provides full transactional execution of JavaScript application logic directly inside the database engine. The deep

integration of JavaScript enables the execution of INSERT, REPLACE, DELETE, and SELECT operations from

within a JavaScript program as an isolated transaction. Learn more in DocumentDB server-side programming.

Tunable consistency levels :Tunable consistency levels : Select from four well defined consistency levels to achieve optimal trade-off

between consistency and performance. For queries and read operations, DocumentDB offers four distinct

consistency levels: strong, bounded-staleness, session, and eventual. These granular, well-defined consistency

levels allow you to make sound trade-offs between consistency, availability, and latency. Learn more in Using

consistency levels to maximize availability and performance in DocumentDB.

Fully managed:Fully managed: Eliminate the need to manage database and machine resources. As a fully-managed Microsoft

Azure service, you do not need to manage virtual machines, deploy and configure software, manage scaling, or

deal with complex data-tier upgrades. Every database is automatically backed up and protected against regional

failures. You can easily add a DocumentDB account and provision capacity as you need it, allowing you to focus

on your application instead of operating and managing your database.

Open by design:Open by design: Get started quickly by using existing skills and tools. Programming against DocumentDB is

simple, approachable, and does not require you to adopt new tools or adhere to custom extensions to JSON or

JavaScript. You can access all of the database functionality including CRUD, query, and JavaScript processing

over a simple RESTful HTTP interface. DocumentDB embraces existing formats, languages, and standards while

offering high value database capabilities on top of them.

Automatic indexing:Automatic indexing: By default, DocumentDB automatically indexes all the documents in the database and

does not expect or require any schema or creation of secondary indices. Don't want to index everything? Don't

worry, you can opt out of paths in your JSON files too.

Azure DocumentDB manages JSON data through well-defined database resources. These resources are replicated

for high availability and are uniquely addressable by their logical URI. DocumentDB offers a simple HTTP based

RESTful programming model for all resources.

The DocumentDB database account is a unique namespace that gives you access to Azure DocumentDB. Before

you can create a database account, you must have an Azure subscription, which gives you access to a variety of

Azure services.

All resources within DocumentDB are modeled and stored as JSON documents. Resources are managed as items,

which are JSON documents containing metadata, and as feeds which are collections of items. Sets of items are

contained within their respective feeds.

The image below shows the relationships between the DocumentDB resources:

file:///D:/azure-docs-pr/_site/azure/.tmp/documentdb/documentdb-indexing.html

 How can I develop apps with DocumentDB?

DOWNLOADDOWNLOAD DOCUMENTATIONDOCUMENTATION

.NET SDK .NET library

Node.js SDK Node.js library

Java SDK Java library

JavaScript SDK JavaScript library

n/a Server-side JavaScript SDK

Python SDK Python library

A database account consists of a set of databases, each containing multiple collections, each of which can contain

stored procedures, triggers, UDFs, documents, and related attachments. A database also has associated users, each

with a set of permissions to access various other collections, stored procedures, triggers, UDFs, documents, or

attachments. While databases, users, permissions, and collections are system-defined resources with well-known

schemas - documents, stored procedures, triggers, UDFs, and attachments contain arbitrary, user defined JSON

content.

Azure DocumentDB exposes resources through a REST API that can be called by any language capable of making

HTTP/HTTPS requests. Additionally, DocumentDB offers programming libraries for several popular languages.

These libraries simplify many aspects of working with Azure DocumentDB by handling details such as address

caching, exception management, automatic retries and so forth. Libraries are currently available for the following

languages and platforms:

http://go.microsoft.com/fwlink/?LinkID=402989
https://msdn.microsoft.com/library/azure/dn948556.aspx
http://go.microsoft.com/fwlink/?LinkID=402990
http://azure.github.io/azure-documentdb-node/
http://go.microsoft.com/fwlink/?LinkID=402380
http://azure.github.io/azure-documentdb-java/
http://go.microsoft.com/fwlink/?LinkID=402991
http://azure.github.io/azure-documentdb-js/
http://azure.github.io/azure-documentdb-js-server/
https://pypi.python.org/pypi/pydocumentdb
http://azure.github.io/azure-documentdb-python/

SQL query

Transactions and JavaScript execution

Next steps

Using the Azure DocumentDB Emulator, you can develop and test your application locally, without creating an

Azure subscription or incurring any costs. When you're satisfied with how your application is working in the

DocumentDB Emulator, you can switch to using an Azure DocumentDB account in the cloud.

Beyond basic create, read, update, and delete operations, DocumentDB provides a rich SQL query interface for

retrieving JSON documents and server side support for transactional execution of JavaScript application logic. The

query and script execution interfaces are available through all platform libraries as well as the REST APIs.

Azure DocumentDB supports querying documents using a SQL language, which is rooted in the JavaScript type

system, and expressions with support for relational, hierarchical, and spatial queries. The DocumentDB query

language is a simple yet powerful interface to query JSON documents. The language supports a subset of ANSI

SQL grammar and adds deep integration of JavaScript object, arrays, object construction, and function invocation.

DocumentDB provides its query model without any explicit schema or indexing hints from the developer.

User Defined Functions (UDFs) can be registered with DocumentDB and referenced as part of a SQL query, thereby

extending the grammar to support custom application logic. These UDFs are written as JavaScript programs and

executed within the database.

For .NET developers, DocumentDB also offers a LINQ query provider as part of the .NET SDK.

DocumentDB allows you to write application logic as named programs written entirely in JavaScript. These

programs are registered for a collection and can issue database operations on the documents within a given

collection. JavaScript can be registered for execution as a trigger, stored procedure or user defined function.

Triggers and stored procedures can create, read, update, and delete documents whereas user defined functions

execute as part of the query execution logic without write access to the collection.

JavaScript execution within DocumentDB is modeled after the concepts supported by relational database systems,

with JavaScript as a modern replacement for Transact-SQL. All JavaScript logic is executed within an ambient ACID

transaction with snapshot isolation. During the course of its execution, if the JavaScript throws an exception, then

the entire transaction is aborted.

Already have an Azure account? Then you can get started with DocumentDB in the Azure Portal by creating a

DocumentDB database account.

Don't have an Azure account? You can:

Sign up for an Azure free trial, which gives you 30 days and $200 to try all the Azure services.

If you have an MSDN subscription, you are eligible for $150 in free Azure credits per month to use on any

Azure service.

Download the the Azure DocumentDB Emulator to develop your application locally.

Then, when you're ready to learn more, visit our learning path to navigate all the learning resources available to

you.

https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.aspx
https://portal.azure.com/#gallery/Microsoft.DocumentDB
https://azure.microsoft.com/free/
https://azure.microsoft.com/pricing/member-offers/msdn-benefits-details/
https://azure.microsoft.com/documentation/learning-paths/documentdb/

Andrew Hoh • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • mimig • arramac • v-aljenk • Dene Hager

DocumentDB hierarchical resource model and
concepts
11/15/2016 • 24 min to read • Edit on GitHub

Contributors

Hierarchical resource model

NOTE

The database entities that DocumentDB manages are referred to as resourcesresources . Each resource is uniquely identified

by a logical URI. You can interact with the resources using standard HTTP verbs, request/response headers and

status codes.

By reading this article, you'll be able to answer the following questions:

What is DocumentDB's resource model?

What are system defined resources as opposed to user defined resources?

How do I address a resource?

How do I work with collections?

How do I work with stored procedures, triggers and User Defined Functions (UDFs)?

As the following diagram illustrates, the DocumentDB hierarchical resource modelresource model consists of sets of resources

under a database account, each addressable via a logical and stable URI. A set of resources will be referred to as a

feedfeed in this article.

DocumentDB offers a highly efficient TCP protocol which is also RESTful in its communication model, available through the

.NET client SDK.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-resources.md
https://github.com/AndrewHoh
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/mimig1
https://github.com/arramac
https://github.com/v-aljenk
https://github.com/deneha
https://msdn.microsoft.com/library/azure/dn781482.aspx

RESOURCERESOURCE DESCRIPTIONDESCRIPTION

Database account A database account is associated with a set of databases and
a fixed amount of blob storage for attachments (preview
feature). You can create one or more database accounts using
your Azure subscription. For more information, visit our
pricing page.

Database A database is a logical container of document storage
partitioned across collections. It is also a users container.

User The logical namespace for scoping permissions.

Permission An authorization token associated with a user for access to a
specific resource.

Collection A collection is a container of JSON documents and the
associated JavaScript application logic. A collection is a billable
entity, where the cost is determined by the performance level
associated with the collection. Collections can span one or
more partitions/servers and can scale to handle practically
unlimited volumes of storage or throughput.

Hierarchical resource modelHierarchical resource model

To start working with resources, you must create a DocumentDB database account using your Azure subscription.

A database account can consist of a set of databasesdatabases , each containing multiple collectionscollections , each of which in turn

contain stored procedures , tr iggers , UDFs, documentsstored procedures , tr iggers , UDFs, documents and related attachmentsattachments (preview feature). A

database also has associated usersusers , each with a set of permiss ionspermiss ions to access collections, stored procedures,

triggers, UDFs, documents or attachments. While databases, users, permissions and collections are system-defined

resources with well-known schemas, documents and attachments contain arbitrary, user defined JSON content.

https://azure.microsoft.com/pricing/details/documentdb/

Stored Procedure Application logic written in JavaScript which is registered with
a collection and transactionally executed within the database
engine.

Trigger Application logic written in JavaScript executed before or after
either an insert, replace or delete operation.

UDF Application logic written in JavaScript. UDFs enable you to
model a custom query operator and thereby extend the core
DocumentDB query language.

Document User defined (arbitrary) JSON content. By default, no schema
needs to be defined nor do secondary indices need to be
provided for all the documents added to a collection.

(Preview) Attachment An attachment is a special document containing references
and associated metadata for external blob/media. The
developer can choose to have the blob managed by
DocumentDB or store it with an external blob service provider
such as OneDrive, Dropbox, etc.

RESOURCERESOURCE DESCRIPTIONDESCRIPTION

System vs. user defined resources

NOTE

Resources such as database accounts, databases, collections, users, permissions, stored procedures, triggers, and

UDFs - all have a fixed schema and are called system resources. In contrast, resources such as documents and

attachments have no restrictions on the schema and are examples of user defined resources. In DocumentDB, both

system and user defined resources are represented and managed as standard-compliant JSON. All resources,

system or user defined, have the following common properties.

Note that all system generated properties in a resource are prefixed with an underscore (_) in their JSON representation.

PropertyProperty User settable or systemUser settable or system
generated?generated?

PurposePurpose

_rid System generated System generated, unique and
hierarchical identifier of the
resource

_etag System generated etag of the resource required for
optimistic concurrency control

_ts System generated Last updated timestamp of the
resource

_self System generated Unique addressable URI of the
resource

Wire representation of resources

Addressing a resource

VALUE OF THE _SELFVALUE OF THE _SELF DESCRIPTIONDESCRIPTION

/dbs Feed of databases under a database account

/dbs/{dbName} Database with an id matching the value {dbName}

/dbs/{dbName}/colls/ Feed of collections under a database

/dbs/{dbName}/colls/{collName} Collection with an id matching the value {collName}

/dbs/{dbName}/colls/{collName}/docs Feed of documents under a collection

/dbs/{dbName}/colls/{collName}/docs/{docId} Document with an id matching the value {doc}

/dbs/{dbName}/users/ Feed of users under a database

/dbs/{dbName}/users/{userId} User with an id matching the value {user}

/dbs/{dbName}/users/{userId}/permissions Feed of permissions under a user

/dbs/{dbName}/users/{userId}/permissions/{permissionId} Permission with an id matching the value {permission}

Database accounts

id System generated User defined unique name of the
resource (with the same partition
key value). If the user does not
specify an id, an id will be system
generated

DocumentDB does not mandate any proprietary extensions to the JSON standard or special encodings; it works

with standard compliant JSON documents.

All resources are URI addressable. The value of the _self_self property of a resource represents the relative URI of the

resource. The format of the URI consists of the /<feed>/{_rid} path segments:

Each resource has a unique user defined name exposed via the id property. Note: for documents, if the user does

not specify an id, our supported SDKs will automatically generate a unique id for the document. The id is a user

defined string, of up to 256 characters that is unique within the context of a specific parent resource.

Each resource also has a system generated hierarchical resource identifier (also referred to as an RID), which is

available via the _rid property. The RID encodes the entire hierarchy of a given resource and it is a convenient

internal representation used to enforce referential integrity in a distributed manner. The RID is unique within a

database account and it is internally used by DocumentDB for efficient routing without requiring cross partition

lookups. The values of the _self and the _rid properties are both alternate and canonical representations of a

resource.

The DocumentDB REST APIs support addressing of resources and routing of requests by both the id and the _rid

properties.

You can provision one or more DocumentDB database accounts using your Azure subscription.

Database account properties

Databases

Elastic scale of a DocumentDB database

You can create and manage DocumentDB database accounts via the Azure Portal at http://portal.azure.com/.

Creating and managing a database account requires administrative access and can only be performed under your

Azure subscription.

As part of provisioning and managing a database account you can configure and read the following properties:

Property NameProperty Name DescriptionDescription

Consistency Policy Set this property to configure the default consistency level
for all the collections under your database account. You
can override the consistency level on a per request basis
using the [x-ms-consistency-level] request header.

Note that this property only applies to the
user defined resources. All system defined resources are
configured to support reads/queries with strong
consistency.

Authorization Keys These are the primary and secondary master and readonly
keys that provide administrative access to all of the
resources under the database account.

Note that in addition to provisioning, configuring and managing your database account from the Azure Portal, you

can also programmatically create and manage DocumentDB database accounts by using the Azure DocumentDB

REST APIs as well as client SDKs.

A DocumentDB database is a logical container of one or more collections and users, as shown in the following

diagram. You can create any number of databases under a DocumentDB database account subject to offer limits.

A Database is a logical container of users and collectionsA Database is a logical container of users and collections

A database can contain virtually unlimited document storage partitioned by collections, which form the transaction

domains for the documents contained within them.

A DocumentDB database is elastic by default – ranging from a few GB to petabytes of SSD backed document

storage and provisioned throughput.

https://portal.azure.com/
http://portal.azure.com/
https://msdn.microsoft.com/library/azure/dn781481.aspx
https://msdn.microsoft.com/library/azure/dn781482.aspx

 Collections

Elastic SSD backed document storage

Automatic indexing of collections

Configuring the indexing policy of a collection

Unlike a database in traditional RDBMS, a database in DocumentDB is not scoped to a single machine. With

DocumentDB, as your application’s scale needs to grow, you can create more collections, databases, or both.

Indeed, various first party applications within Microsoft have been using DocumentDB at a consumer scale by

creating extremely large DocumentDB databases each containing thousands of collections with terabytes of

document storage. You can grow or shrink a database by adding or removing collections to meet your

application’s scale requirements.

You can create any number of collections within a database subject to the offer. Each collection has SSD backed

storage and throughput provisioned for you depending on the selected performance tier.

A DocumentDB database is also a container of users. A user, in-turn, is a logical namespace for a set of permissions

that provides fine-grained authorization and access to collections, documents and attachments.

As with other resources in the DocumentDB resource model, databases can be created, replaced, deleted, read or

enumerated easily using either Azure DocumentDB REST APIs or any of the client SDKs. DocumentDB guarantees

strong consistency for reading or querying the metadata of a database resource. Deleting a database automatically

ensures that you cannot access any of the collections or users contained within it.

A DocumentDB collection is a container for your JSON documents. A collection is also a unit of scale for

transactions and queries.

A collection is intrinsically elastic - it automatically grows and shrinks as you add or remove documents.

Collections are logical resources and can span one or more physical partitions or servers. The number of partitions

within a collection is determined by DocumentDB based on the storage size and the provisioned throughput of

your collection. Every partition in DocumentDB has a fixed amount of SSD-backed storage associated with it, and is

replicated for high availability. Partition management is fully managed by Azure DocumentDB, and you do not

have to write complex code or manage your partitions. DocumentDB collections are practically unlim itedpractically unlim ited in

terms of storage and throughput.

DocumentDB is a true schema-free database system. It does not assume or require any schema for the JSON

documents. As you add documents to a collection, DocumentDB automatically indexes them and they are available

for you to query. Automatic indexing of documents without requiring schema or secondary indexes is a key

capability of DocumentDB and is enabled by write-optimized, lock-free and log-structured index maintenance

techniques. DocumentDB supports sustained volume of extremely fast writes while still serving consistent queries.

Both document and index storage are used to calculate the storage consumed by each collection. You can control

the storage and performance trade-offs associated with indexing by configuring the indexing policy for a

collection.

The indexing policy of each collection allows you to make performance and storage trade-offs associated with

indexing. The following options are available to you as part of indexing configuration:

Choose whether the collection automatically indexes all of the documents or not. By default, all documents are

automatically indexed. You can choose to turn off automatic indexing and selectively add only specific

documents to the index. Conversely, you can selectively choose to exclude only specific documents. You can

achieve this by setting the automatic property to be true or false on the indexingPolicy of a collection and using

the [x-ms-indexingdirective] request header while inserting, replacing or deleting a document.

Choose whether to include or exclude specific paths or patterns in your documents from the index. You can

achieve this by setting includedPaths and excludedPaths on the indexingPolicy of a collection respectively. You

can also configure the storage and performance trade-offs for range and hash queries for specific path patterns.

https://msdn.microsoft.com/library/azure/dn781481.aspx
https://msdn.microsoft.com/library/azure/dn781482.aspx

Querying a collection

TIP

Multi-document transactions

Choose between synchronous (consistent) and asynchronous (lazy) index updates. By default, the index is

updated synchronously on each insert, replace or delete of a document to the collection. This enables the

queries to honor the same consistency level as that of the document reads. While DocumentDB is write

optimized and supports sustained volumes of document writes along with synchronous index maintenance and

serving consistent queries, you can configure certain collections to update their index lazily. Lazy indexing

boosts the write performance further and is ideal for bulk ingestion scenarios for primarily read-heavy

collections.

The indexing policy can be changed by executing a PUT on the collection. This can be achieved either through the

client SDK, the Azure Portal or the Azure DocumentDB REST APIs.

The documents within a collection can have arbitrary schemas and you can query documents within a collection

without providing any schema or secondary indices upfront. You can query the collection using the DocumentDB

SQL syntax, which provides rich hierarchical, relational, and spatial operators and extensibility via JavaScript-based

UDFs. JSON grammar allows for modeling JSON documents as trees with labels as the tree nodes. This is exploited

both by DocumentDB’s automatic indexing techniques as well as DocumentDB's SQL dialect. The DocumentDB

query language consists of three main aspects:

1. A small set of query operations that map naturally to the tree structure including hierarchical queries and

projections.

2. A subset of relational operations including composition, filter, projections, aggregates and self joins.

3. Pure JavaScript based UDFs that work with (1) and (2).

The DocumentDB query model attempts to strike a balance between functionality, efficiency and simplicity. The

DocumentDB database engine natively compiles and executes the SQL query statements. You can query a

collection using the Azure DocumentDB REST APIs or any of the client SDKs. The .NET SDK comes with a LINQ

provider.

You can try out DocumentDB and run SQL queries against our dataset in the Query Playground.

Database transactions provide a safe and predictable programming model for dealing with concurrent changes to

the data. In RDBMS, the traditional way to write business logic is to write stored-proceduresstored-procedures and/or tr iggerstr iggers

and ship it to the database server for transactional execution. In RDBMS, the application programmer is required to

deal with two disparate programming languages:

The (non-transactional) application programming language (e.g. JavaScript, Python, C#, Java, etc.)

T-SQL, the transactional programming language which is natively executed by the database

By virtue of its deep commitment to JavaScript and JSON directly within the database engine, DocumentDB

provides an intuitive programming model for executing JavaScript based application logic directly on the

collections in terms of stored procedures and triggers. This allows for both of the following:

Efficient implementation of concurrency control, recovery, automatic indexing of the JSON object graphs

directly in the database engine

Naturally expressing control flow, variable scoping, assignment and integration of exception handling

primitives with database transactions directly in terms of the JavaScript programming language

The JavaScript logic registered at a collection level can then issue database operations on the documents of the

given collection. DocumentDB implicitly wraps the JavaScript based stored procedures and triggers within an

ambient ACID transactions with snapshot isolation across documents within a collection. During the course of its

https://msdn.microsoft.com/library/azure/dn781482.aspx
https://portal.azure.com
https://msdn.microsoft.com/library/azure/dn781481.aspx
https://msdn.microsoft.com/library/azure/dn782250.aspx
https://msdn.microsoft.com/library/azure/dn781481.aspx
https://msdn.microsoft.com/library/azure/dn781482.aspx
https://www.documentdb.com/sql/demo

function businessLogic(name, author) {

 var context = getContext();

 var collectionManager = context.getCollection();

 var collectionLink = collectionManager.getSelfLink()

 // create a new document.

 collectionManager.createDocument(collectionLink,

 {id: name, author: author},

 function(err, documentCreated) {

 if(err) throw new Error(err.message);

 // filter documents by author

 var filterQuery = "SELECT * from root r WHERE r.author = 'George R.'";

 collectionManager.queryDocuments(collectionLink,

 filterQuery,

 function(err, matchingDocuments) {

 if(err) throw new Error(err.message);

 context.getResponse().setBody(matchingDocuments.length);

 // Replace the author name for all documents that satisfied the query.

 for (var i = 0; i < matchingDocuments.length; i++) {

 matchingDocuments[i].author = "George R. R. Martin";

 // we don’t need to execute a callback because they are in parallel

 collectionManager.replaceDocument(matchingDocuments[i]._self,

 matchingDocuments[i]);

 }

 })

 })

};

client.createStoredProcedureAsync(collection._self, {id: "CRUDProc", body: businessLogic})

 .then(function(createdStoredProcedure) {

 return client.executeStoredProcedureAsync(createdStoredProcedure.resource._self,

 "NoSQL Distilled",

 "Martin Fowler");

 })

 .then(function(result) {

 console.log(result);

 },

 function(error) {

 console.log(error);

 });

execution, if the JavaScript throws an exception, then the entire transaction is aborted. The resulting programming

model is a very simple yet powerful. JavaScript developers get a “durable” programming model while still using

their familiar language constructs and library primitives.

The ability to execute JavaScript directly within the database engine in the same address space as the buffer pool

enables performant and transactional execution of database operations against the documents of a collection.

Furthermore, DocumentDB database engine makes a deep commitment to the JSON and JavaScript eliminates any

impedance mismatch between the type systems of application and the database.

After creating a collection, you can register stored procedures, triggers and UDFs with a collection using the Azure

DocumentDB REST APIs or any of the client SDKs. After registration, you can reference and execute them. Consider

the following stored procedure written entirely in JavaScript, the code below takes two arguments (book name and

author name) and creates a new document, queries for a document and then updates it – all within an implicit

ACID transaction. At any point during the execution, if a JavaScript exception is thrown, the entire transaction

aborts.

The client can “ship” the above JavaScript logic to the database for transactional execution via HTTP POST. For

more information about using HTTP methods, see RESTful interactions with DocumentDB resources.

https://msdn.microsoft.com/library/azure/dn781481.aspx
https://msdn.microsoft.com/library/azure/dn781482.aspx
https://msdn.microsoft.com/library/azure/mt622086.aspx

Stored procedures, triggers and User Defined Functions (UDF)

Registering a stored procedure

var storedProc = {

 id: "validateAndCreate",

 body: function (documentToCreate) {

 documentToCreate.id = documentToCreate.id.toUpperCase();

 var collectionManager = getContext().getCollection();

 collectionManager.createDocument(collectionManager.getSelfLink(),

 documentToCreate,

 function(err, documentCreated) {

 if(err) throw new Error('Error while creating document: ' + err.message;

 getContext().getResponse().setBody('success - created ' +

 documentCreated.name);

 });

 }

};

client.createStoredProcedureAsync(collection._self, storedProc)

 .then(function (createdStoredProcedure) {

 console.log("Successfully created stored procedure");

 }, function(error) {

 console.log("Error");

 });

Executing a stored procedure

Notice that because the database natively understands JSON and JavaScript, there is no type system mismatch, no

“OR mapping” or code generation magic required.

Stored procedures and triggers interact with a collection and the documents in a collection through a well-defined

object model, which exposes the current collection context.

Collections in DocumentDB can be created, deleted, read or enumerated easily using either the Azure DocumentDB

REST APIs or any of the client SDKs. DocumentDB always provides strong consistency for reading or querying the

metadata of a collection. Deleting a collection automatically ensures that you cannot access any of the documents,

attachments, stored procedures, triggers, and UDFs contained within it.

As described in the previous section, you can write application logic to run directly within a transaction inside of

the database engine. The application logic can be written entirely in JavaScript and can be modeled as a stored

procedure, trigger or a UDF. The JavaScript code within a stored procedure or a trigger can insert, replace, delete,

read or query documents within a collection. On the other hand, the JavaScript within a UDF cannot insert, replace,

or delete documents. UDFs enumerate the documents of a query's result set and produce another result set. For

multi-tenancy, DocumentDB enforces a strict reservation based resource governance. Each stored procedure,

trigger or a UDF gets a fixed quantum of operating system resources to do its work. Furthermore, stored

procedures, triggers or UDFs cannot link against external JavaScript libraries and are blacklisted if they exceed the

resource budgets allocated to them. You can register, unregister stored procedures, triggers or UDFs with a

collection by using the REST APIs. Upon registration a stored procedure, trigger, or a UDF is pre-compiled and

stored as byte code which gets executed later. The following section illustrate how you can use the DocumentDB

JavaScript SDK to register, execute, and unregister a stored procedure, trigger, and a UDF. The JavaScript SDK is a

simple wrapper over the DocumentDB REST APIs.

Registration of a stored procedure creates a new stored procedure resource on a collection via HTTP POST.

Execution of a stored procedure is done by issuing an HTTP POST against an existing stored procedure resource by

passing parameters to the procedure in the request body.

https://msdn.microsoft.com/library/azure/dn781481.aspx
https://msdn.microsoft.com/library/azure/dn781482.aspx
https://msdn.microsoft.com/library/azure/dn781481.aspx

var inputDocument = {id : "document1", author: "G. G. Marquez"};

client.executeStoredProcedureAsync(createdStoredProcedure.resource._self, inputDocument)

 .then(function(executionResult) {

 assert.equal(executionResult, "success - created DOCUMENT1");

 }, function(error) {

 console.log("Error");

 });

Unregistering a stored procedure

client.deleteStoredProcedureAsync(createdStoredProcedure.resource._self)

 .then(function (response) {

 return;

 }, function(error) {

 console.log("Error");

 });

Registering a pre-trigger

var preTrigger = {

 id: "upperCaseId",

 body: function() {

 var item = getContext().getRequest().getBody();

 item.id = item.id.toUpperCase();

 getContext().getRequest().setBody(item);

 },

 triggerType: TriggerType.Pre,

 triggerOperation: TriggerOperation.All

}

client.createTriggerAsync(collection._self, preTrigger)

 .then(function (createdPreTrigger) {

 console.log("Successfully created trigger");

 }, function(error) {

 console.log("Error");

 });

Executing a pre-trigger

client.createDocumentAsync(collection._self, { id: "doc1", key: "Love in the Time of Cholera" }, {

preTriggerInclude: "upperCaseId" })

 .then(function(createdDocument) {

 assert.equal(createdDocument.resource.id, "DOC1");

 }, function(error) {

 console.log("Error");

 });

Unregistering a pre-trigger

Unregistering a stored procedure is simply done by issuing an HTTP DELETE against an existing stored procedure

resource.

Registration of a trigger is done by creating a new trigger resource on a collection via HTTP POST. You can specify

if the trigger is a pre or a post trigger and the type of operation it can be associated with (e.g. Create, Replace,

Delete, or All).

Execution of a trigger is done by specifying the name of an existing trigger at the time of issuing the

POST/PUT/DELETE request of a document resource via the request header.

Unregistering a trigger is simply done via issuing an HTTP DELETE against an existing trigger resource.

client.deleteTriggerAsync(createdPreTrigger._self);

 .then(function(response) {

 return;

 }, function(error) {

 console.log("Error");

 });

Registering a UDF

var udf = {

 id: "mathSqrt",

 body: function(number) {

 return Math.sqrt(number);

 },

};

client.createUserDefinedFunctionAsync(collection._self, udf)

 .then(function (createdUdf) {

 console.log("Successfully created stored procedure");

 }, function(error) {

 console.log("Error");

 });

Executing a UDF as part of the query

var filterQuery = "SELECT udf.mathSqrt(r.Age) AS sqrtAge FROM root r WHERE r.FirstName='John'";

client.queryDocuments(collection._self, filterQuery).toArrayAsync();

 .then(function(queryResponse) {

 var queryResponseDocuments = queryResponse.feed;

 }, function(error) {

 console.log("Error");

 });

Unregistering a UDF

client.deleteUserDefinedFunctionAsync(createdUdf._self)

 .then(function(response) {

 return;

 }, function(error) {

 console.log("Error");

 });

Documents

Registration of a UDF is done by creating a new UDF resource on a collection via HTTP POST.

A UDF can be specified as part of the SQL query and is used as a way to extend the core SQL query language of

DocumentDB.

Unregistering a UDF is simply done by issuing an HTTP DELETE against an existing UDF resource.

Although the snippets above showed the registration (POST), unregistration (PUT), read/list (GET) and execution

(POST) via the DocumentDB JavaScript SDK, you can also use the REST APIs or other client SDKs.

You can insert, replace, delete, read, enumerate and query arbitrary JSON documents in a collection. DocumentDB

does not mandate any schema and does not require secondary indexes in order to support querying over

documents in a collection.

Being a truly open database service, DocumentDB does not invent any specialized data types (e.g. date time) or

specific encodings for JSON documents. Note that DocumentDB does not require any special JSON conventions to

codify the relationships among various documents; the SQL syntax of DocumentDB provides very powerful

hierarchical and relational query operators to query and project documents without any special annotations or

https://msdn.microsoft.com/library/azure/dn782250.aspx
https://github.com/Azure/azure-documentdb-js
https://msdn.microsoft.com/library/azure/dn781481.aspx
https://msdn.microsoft.com/library/azure/dn781482.aspx

Attachments and media

NOTE

Users

need to codify relationships among documents using distinguished properties.

As with all other resources, documents can be created, replaced, deleted, read, enumerated and queried easily

using either REST APIs or any of the client SDKs. Deleting a document instantly frees up the quota corresponding

to all of the nested attachments. The read consistency level of documents follows the consistency policy on the

database account. This policy can be overridden on a per-request basis depending on data consistency

requirements of your application. When querying documents, the read consistency follows the indexing mode set

on the collection. For “consistent”, this follows the account’s consistency policy.

Attachment and media resources are preview features.

DocumentDB allows you to store binary blobs/media either with DocumentDB or to your own remote media store.

It also allows you to represent the metadata of a media in terms of a special document called attachment. An

attachment in DocumentDB is a special (JSON) document that references the media/blob stored elsewhere. An

attachment is simply a special document that captures the metadata (e.g. location, author etc.) of a media stored in

a remote media storage.

Consider a social reading application which uses DocumentDB to store ink annotations, and metadata including

comments, highlights, bookmarks, ratings, likes/dislikes etc. associated for an e-book of a given user.

The content of the book itself is stored in the media storage either available as part of DocumentDB database

account or a remote media store.

An application may store each user’s metadata as a distinct document -- e.g. Joe’s metadata for book1 is stored

in a document referenced by /colls/joe/docs/book1.

Attachments pointing to the content pages of a given book of a user are stored under the corresponding

document e.g. /colls/joe/docs/book1/chapter1, /colls/joe/docs/book1/chapter2 etc.

Note that the examples listed above use friendly ids to convey the resource hierarchy. Resources are accessed via

the REST APIs through unique resource ids.

For the media that is managed by DocumentDB, the _media property of the attachment will reference the media by

its URI. DocumentDB will ensure to garbage collect the media when all of the outstanding references are dropped.

DocumentDB automatically generates the attachment when you upload the new media and populates the _media

to point to the newly added media. If you choose to store the media in a remote blob store managed by you (e.g.

OneDrive, Azure Storage, DropBox etc), you can still use attachments to reference the media. In this case, you will

create the attachment yourself and populate its _media property.

As with all other resources, attachments can be created, replaced, deleted, read or enumerated easily using either

REST APIs or any of the client SDKs. As with documents, the read consistency level of attachments follows the

consistency policy on the database account. This policy can be overridden on a per-request basis depending on

data consistency requirements of your application. When querying for attachments, the read consistency follows

the indexing mode set on the collection. For “consistent”, this follows the account’s consistency policy.  

A DocumentDB user represents a logical namespace for grouping permissions. A DocumentDB user may

correspond to a user in an identity management system or a predefined application role. For DocumentDB, a user

simply represents an abstraction to group a set of permissions under a database.

For implementing multi-tenancy in your application, you can create users in DocumentDB which corresponds to

your actual users or the tenants of your application. You can then create permissions for a given user that

https://msdn.microsoft.com/library/azure/dn781482.aspx

Permissions

correspond to the access control over various collections, documents, attachments, etc.

As your applications need to scale with your user growth, you can adopt various ways to shard your data. You can

model each of your users as follows:

Each user maps to a database.

Each user maps to a collection.

Documents corresponding to multiple users go to a dedicated collection.

Documents corresponding to multiple users go to a set of collections.

Regardless of the specific sharding strategy you choose, you can model your actual users as users in DocumentDB

database and associate fine grained permissions to each user.

Sharding strategies and modeling usersSharding strategies and modeling users

Like all other resources, users in DocumentDB can be created, replaced, deleted, read or enumerated easily using

either REST APIs or any of the client SDKs. DocumentDB always provides strong consistency for reading or

querying the metadata of a user resource. It is worth pointing out that deleting a user automatically ensures that

you cannot access any of the permissions contained within it. Even though the DocumentDB reclaims the quota of

the permissions as part of the deleted user in the background, the deleted permissions is available instantly again

for you to use.

From an access control perspective, resources such as database accounts, databases, users and permission are

considered administrative resources since these require administrative permissions. On the other hand, resources

including the collections, documents, attachments, stored procedures, triggers, and UDFs are scoped under a given

database and considered application resources. Corresponding to the two types of resources and the roles that

access them (namely the administrator and user), the authorization model defines two types of access keys: master

key and resource key. The master key is a part of the database account and is provided to the developer (or

administrator) who is provisioning the database account. This master key has administrator semantics, in that it

can be used to authorize access to both administrative and application resources. In contrast, a resource key is a

granular access key that allows access to a specific application resource. Thus, it captures the relationship between

the user of a database and the permissions the user has for a specific resource (e.g. collection, document,

attachment, stored procedure, trigger, or UDF).

The only way to obtain a resource key is by creating a permission resource under a given user. Note that In order

to create or retrieve a permission, a master key must be presented in the authorization header. A permission

resource ties the resource, its access and the user. After creating a permission resource, the user only needs to

present the associated resource key in order to gain access to the relevant resource. Hence, a resource key can be

viewed as a logical and compact representation of the permission resource.

As with all other resources, permissions in DocumentDB can be created, replaced, deleted, read or enumerated

easily using either REST APIs or any of the client SDKs. DocumentDB always provides strong consistency for

Next steps

reading or querying the metadata of a permission.

Learn more about working with resources by using HTTP commands in RESTful interactions with DocumentDB

resources.

https://msdn.microsoft.com/library/azure/mt622086.aspx

Kirat Pandya • mimig • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil

Distribute data globally with DocumentDB
11/22/2016 • 4 min to read • Edit on GitHub

Contributors

NOTE

Configuring multi-region accounts

Global distribution of DocumentDB databases is generally available and automatically enabled for any newly created

DocumentDB accounts. We are working to enable global distribution on all existing accounts, but in the interim, if you want

global distribution enabled on your account, please contact support and we’ll enable it for you now.

Azure DocumentDB is designed to meet the needs of IoT applications consisting of millions of globally distributed

devices and internet scale applications that deliver highly responsive experiences to users across the world. These

database systems face the challenge of achieving low latency access to application data from multiple geographic

regions with well-defined data consistency and availability guarantees. As a globally distributed database system,

DocumentDB simplifies the global distribution of data by offering fully managed, multi-region database accounts

that provide clear tradeoffs between consistency, availability and performance, all with corresponding guarantees.

DocumentDB database accounts are offered with high availability, single digit ms latencies, multiple well-defined

consistency levels, transparent regional failover with multi-homing APIs, and the ability to elastically scale

throughput and storage across the globe.

We recommend getting started by watching the following video, where Karthik Raman explains geo-distribution

with Azure DocumentDB.

Configuring your DocumentDB account to scale across the globe can be done in less than a minute through the

Azure portal. All you need to do is select the right consistency level among several supported well-defined

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-distribute-data-globally.md
https://github.com/kiratp
https://github.com/mimig1
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://portal.azure.com/?#blade/Microsoft_Azure_Support/HelpAndSupportBlade

Using multi-region failover

Scaling across the planet

consistency levels, and associate any number of Azure regions with your database account. DocumentDB

consistency levels provide clear tradeoffs between specific consistency guarantee and performance.

DocumentDB offers multiple, well defined (relaxed) consistency models to choose from.

Selecting the right consistency level depends on data consistency guarantee your application needs. DocumentDB

automatically replicates your data across all specified regions and guarantees the consistency that you have

selected for your database account.

Azure DocumentDB is able to transparently failover database accounts across multiple Azure regions – the new

multi-homing APIs guarantee that your app can continue to use a logical endpoint and is uninterrupted by the

failover. Failover is controlled by you, providing the flexibility to rehome your database account in the event any

of range of possible failure conditions occur, including application, infrastructure, service or regional failures (real

or simulated). In the event of a DocumentDB regional failure, the service will transparently fail over your database

account and your application continues to access data without losing availability. While DocumentDB offers

99.99% availability SLAs, you can test your application’s end to end availability properties by simulating a regional

failure both, programmatically as well as through the Azure Portal.

DocumentDB allows you to independently provision throughput and consume storage for each DocumentDB

collection at any scale, globally across all the regions associated with your database account. A DocumentDB

collection is automatically distributed globally and managed across all of the regions associated with your

database account. Collections within your database account can be distributed across any of the Azure regions in

which the DocumentDB service is available.

The throughput purchased and storage consumed for each DocumentDB collection is automatically provisioned

across all regions equally. This allows your application to seamlessly scale across the globe paying only for the

throughput and storage you are using within each hour. For instance, if you have provisioned 2 million RUs for a

DocumentDB collection, then each of the regions associated with your database account gets 2 million RUs for

that collection. This is illustrated below.

https://azure.microsoft.com/support/legal/sla/documentdb/
https://azure.microsoft.com/en-us/regions/#services
https://azure.microsoft.com/pricing/details/documentdb/

Enabling global distribution

Next steps

DocumentDB guarantees < 10 ms read and < 15 ms write latencies at P99. The read requests never span

datacenter boundary to guarantee the consistency requirements you have selected. The writes are always quorum

committed locally before they are acknowledged to the clients. Each database account is configured with write

region priority. The region designated with highest priority will act as the current write region for the account. All

SDKs will transparently route database account writes to the current write region.

Finally, since DocumentDB is completely schema-agnostic - you never have to worry about managing/updating

schemas or secondary indexes across multiple datacenters. Your SQL queries continue to work while your

application and data models continue to evolve.

You can decide to make your data locally or globally distributed by either associating one or more Azure regions

with a DocumentDB database account. You can add or remove regions to your database account at any time. To

enable global distribution by using the portal, see How to perform DocumentDB global database replication using

the Azure portal. To enable global distribution programmatically, see Developing with multi-region DocumentDB

accounts.

Learn more about the distributing data globally with DocumentDB in the following articles:

Provisioning throughput and storage for a collection

Multi-homing APIs via REST. .NET, Java, Python, and Node SDKs

Consistency Levels in DocumentDB

Availability SLAs

Managing database account

http://www.vldb.org/pvldb/vol8/p1668-shukla.pdf
https://azure.microsoft.com/support/legal/sla/documentdb/

Han Wong • mimig • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • arramac • Dene Hager

Common DocumentDB use cases
11/22/2016 • 8 min to read • Edit on GitHub

Contributors

Common use cases for DocumentDB

Web and mobile applications

Social Applications

This article provides an overview of several common use cases for DocumentDB. The recommendations in this

article serve as a starting point as you develop your application with DocumentDB.

After reading this article, you'll be able to answer the following questions:

What are the common use cases for DocumentDB?

What are the benefits of using DocumentDB for web and mobile applications?

What are the benefits of using DocumentDB for retail applications?

What are the benefits of using DocumentDB as a data store for Internet of Things (IoT) systems?

What are the benefits of using DocumentDB as a event log store?

Azure DocumentDB is a general purpose NoSQL database that is used in a wide range of applications and use

cases. It is a good choice for any application that needs low order-of-millisecond response times, and needs to

scale rapidly. The following are some attributes of DocumentDB that make it well-suited for high-performance

applications.

DocumentDB natively partitions your data for high availability and scalability.

DocumentDB's has SSD backed storage with low-latency order-of-millisecond response times.

DocumentDB's support for consistency levels like eventual, session and bounded-staleness allows for low cost-

to performance-ratio.

DocumentDB has a flexible data-friendly pricing model that meters storage and throughput independently.

DocumentDB's reserved throughput model allows you to think in terms of number of reads/writes instead of

CPU/memory/IOPs of the underlying hardware.

DocumentDB's design lets you scale to massive request volumes in the order of billions of requests per day.

These attributes are particularly beneficial when it comes to web, mobile, gaming and IoT applications that need

low response times and need to handle massive amounts of reads and writes.

DocumentDB is commonly used within web and mobile applications, and is particularly well suited for modeling

social interactions, integrating with third-party services, and for building rich personalized experiences.

A common use case for DocumentDB is to store and query user generated content (UGC) for web and mobile

applications, particularly social media applications. Some examples of UGC are chat sessions, tweets, blog posts,

ratings, and comments. Often, the UGC in social media applications is a blend of free form text, properties, tags and

relationships that are not bounded by rigid structure. Content such as chats, comments, and posts can be stored in

DocumentDB without requiring transformations or complex object to relational mapping layers. Data properties

can be added or modified easily to match requirements as developers iterate over the application code, thus

promoting rapid development.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-use-cases.md
https://github.com/h0n
https://github.com/mimig1
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/arramac
https://github.com/deneha

Personalization

Retail applications

IoT and Telematics

Logging and Time-series data

Applications that integrate with third-party social networks must respond to changing schemas from these

networks. As data is automatically indexed by default in DocumentDB, data is ready to be queried at any time.

Hence, these applications have the flexibility to retrieve projections as per their respective needs.

Many of the social applications run at global scale and can exhibit unpredictable usage patterns. Flexibility in

scaling the data store is essential as the application layer scales to match usage demand. You can scale out by

adding additional data partitions under a DocumentDB account. In addition, you can also create additional

DocumentDB accounts across multiple regions. For DocumentDB service region availability, see Azure Regions.

Nowadays, modern applications come with complex views and experiences. These are typically dynamic, catering

to user preferences or moods and branding needs. Hence, applications need to be able to retrieve personalized

settings effectively in order to render UI elements and experiences quickly.

JSON is an effective format to represent UI layout data as it is not only lightweight, but also can be easily

interpreted by JavaScript. DocumentDB offers tunable consistency levels that allow fast reads with low latency

writes. Hence, storing UI layout data including personalized settings as JSON documents in DocumentDB is an

effective means to get this data across the wire.

DocumentDB is commonly used in the retail industry for storing catalog data. Catalog data usage scenarios involve

storing and querying a set of attributes for entities such as people, places and products. Some examples of catalog

data are user accounts, product catalogs, device registries for IoT, and bill of materials systems. Attributes for this

data may vary and can change over time to fit application requirements.

Consider an example of a product catalog for an automotive parts supplier. Every part may have its own attributes

in addition to the common attributes that all parts share. Furthermore, attributes for a specific part can change the

following year when a new model is released. As a JSON document store, DocumentDB supports flexible schemas

and allows you to represent data with nested properties, and thus it is well suited for storing product catalog data.

IoT use cases commonly share some patterns in how they ingest, process and store data. First, these systems allow

for data intake that can ingest bursts of data from device sensors of various locales. Next, these systems process

and analyze streaming data to derive real time insights. And last but not least, most if not all data will eventually

land in a data store for adhoc querying and offline analytics.

Microsoft Azure offers rich services that can be leveraged for IoT use cases. Azure IoT services are a set of services

including Azure Event Hubs, Azure DocumentDB, Azure Stream Analytics, Azure Notification Hub, Azure Machine

Learning, Azure HDInsight, and PowerBI.

Bursts of data can be ingested by Azure Event Hubs as it offers high throughput data ingestion with low latency.

Data ingested that needs to be processed for real time insight can be funneled to Azure Stream Analytics for real

time analytics. Data can be loaded into DocumentDB for adhoc querying. Once the data is loaded into

DocumentDB, the data is ready to be queried. The data in DocumentDB can be used as reference data as part of

real time analytics. In addition, data can further be refined and processed by connecting DocumentDB data to

HDInsight for Pig, Hive or Map/Reduce jobs. Refined data is then loaded back to DocumentDB for reporting.

For a sample IoT solution using DocumentDB, EventHubs and Storm, see the hdinsight-storm-examples repository

on GitHub.

For more information on Azure offerings for IoT, see Create the Internet of Your Things.

https://azure.microsoft.com/regions/#services
https://github.com/hdinsight/hdinsight-storm-examples/
http://www.microsoft.com/en-us/server-cloud/internet-of-things.aspx

Gaming

Next steps

Application logging is often emitted in large volumes and may have varying attributes based on the deployed

application version or the component logging events. Log data is not bounded by complex relationships or rigid

structures. Increasingly, log data is persisted in JSON format since JSON is lightweight and easy for humans to

read.

There are typically two major use cases related to event log data. The first use case is to perform ad-hoc queries

over a subset of data for troubleshooting. During troubleshooting, a subset of data is first retrieved from the logs,

typically by time series. Then, a drill-down is performed by filtering the dataset with error levels or error messages.

This is where storing event logs in DocumentDB is an advantage. Log data stored in DocumentDB is automatically

indexed by default, and thus it is ready to be queried at any time. In addition, log data can be persisted across data

partitions as a time-series. Older logs can be rolled out to cold storage per your retention policy.

The second use case involves long running data analytics jobs performed offline over a large volume of log data.

Examples of this use case include server availability analysis, application error analysis, and clickstream data

analysis. Typically, Hadoop is used to perform these types of analyses. With the Hadoop Connector for

DocumentDB, DocumentDB databases function as data sources and sinks for Pig, Hive and Map/Reduce jobs. For

details on the Hadoop Connector for DocumentDB, see Run a Hadoop job with DocumentDB and HDInsight.

The database tier is a crucial component of gaming applications. Modern games perform graphical processing on

mobile/console clients, but rely on the cloud to deliver customized and personalized content like in-game stats,

social media integration, and high-score leaderboards. Games require extremely low latencies for reads and writes

to provide an engaging in-game experience, and the database tier needs to handle highs and lows in request rates

during new game launches and feature updates.

DocumentDB is used by massive-scale games like The Walking Dead: No Man's Land by Next Games, and Halo 5:

Guardians. In both use cases, the key advantages of DocumentDB were the following:

DocumentDB allows performance to be scaled up or down elastically. This allows games to handle updating

profile and stats from dozens to millions of simultaneous gamers by making a single API call.

DocumentDB supports millisecond reads and writes to help avoid any lags during game play.

DocumentDB's automatic indexing allows for filtering against multiple different properties in real-time, e.g.

locate players by their internal player IDs, or their GameCenter, Facebook, Google IDs, or query based on player

membership in a guild. This is possible without building complex indexing or sharding infrastructure.

Social features including in-game chat messages, player guild memberships, challenges completed, high-score

leaderboards, and social graphs are easier to implement with a flexible schema.

DocumentDB as a managed platform-as-a-service (PaaS) required minimal setup and management work to

allow for rapid iteration, and reduce time to market.

To get started with DocumentDB, you can create an account and then follow our learning path to learn about

DocumentDB and find the information you need.

Or, if you'd like to read more about customers using DocumentDB, the following customer stories are available:

Affinio. Affinio switches from AWS to Azure DocumentDB to harness social data at scale.

Next Games. The Walking Dead: No Man's Land game soars to #1 supported by Azure DocumentDB.

Halo. How Halo 5 implemented social gameplay using Azure DocumentDB.

Cortana Analytics Gallery. Cortana Analytics Gallery - a scalable community site built on Azure DocumentDB.

Breeze. Leading Integrator Gives Multinational Firms Global Insight in Minutes with Flexible Cloud Technologies.

News Republic. Adding intelligence to the news to provide information with purpose for engaged citizens.

SGS International. For consistent color across the globe, major brands turn to SGS. And SGS turns to Azure.

https://azure.microsoft.com//blog/the-walking-dead-no-mans-land-game-soars-to-1-with-azure-documentdb/
http://www.nextgames.com/
https://azure.microsoft.com/blog/how-halo-5-guardians-implemented-social-gameplay-using-azure-documentdb/
https://azure.microsoft.com/pricing/free-trial/
https://azure.microsoft.com/documentation/learning-paths/documentdb/
https://customers.microsoft.com/en-US/doclink/affinio-switches-from-aws-to-azure-documentdb-to-harness-social-data-at-scale
https://azure.microsoft.com//blog/the-walking-dead-no-mans-land-game-soars-to-1-with-azure-documentdb/
https://azure.microsoft.com/blog/how-halo-5-guardians-implemented-social-gameplay-using-azure-documentdb/
https://azure.microsoft.com/blog/cortana-analytics-gallery-a-scalable-community-site-built-on-azure-documentdb/
https://customers.microsoft.com/Pages/CustomerStory.aspx?recid=18602
https://customers.microsoft.com/Pages/CustomerStory.aspx?recid=18639
https://customers.microsoft.com/Pages/CustomerStory.aspx?recid=18653

Telenor. Global leader Telenor uses the cloud to move with the speed of a startup.

XOMNI. The store of the future runs on speedy search and the easy flow of data.

Nucleo. Azure-based software platform breaks down barriers between businesses and customers

Weka. Weka Smart Fridge improves vaccine management so more people can be protected against diseases

Orange Tribes. There’s more to that food app than meets the eye, or the mouth.

Real Madrid. Real Madrid brings the stadium closer to 450 million fans around the globe, with the Microsoft

Cloud.

Tuku. TUKU makes car buying fun with help from Azure services

https://customers.microsoft.com/Pages/CustomerStory.aspx?recid=18608
https://customers.microsoft.com/Pages/CustomerStory.aspx?recid=18667
https://customers.microsoft.com/story/azure-based-software-platform-breaks-down-barriers-bet
https://customers.microsoft.com/story/weka-smart-fridge-improves-vaccine-management-so-more-people-can-be-protected-against-diseases
https://customers.microsoft.com/en-US/story/theres-more-to-that-food-app-than-meets-the-eye-or-the-mouth
https://customers.microsoft.com/en-US/story/real-madrid-brings-the-stadium-closer-to-450-million-f
https://customers.microsoft.com/en-US/story/tuku-makes-car-buying-fun-with-help-from-azure-services

Matias Quaranta • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • mimig • Gary Ericson

Going social with DocumentDB
11/15/2016 • 11 min to read • Edit on GitHub

Contributors

Living in a massively-interconnected society means that, at some point in life, you become part of a socialsocial

networknetwork . We use social networks to keep in touch with friends, colleagues, family, or sometimes to share our

passion with people with common interests.

As engineers or developers, we might have wondered how do these networks store and interconnect our data, or

might have even been tasked to create or architect a new social network for a specific niche market yourselves.

That’s when the big question arises: How is all this data stored?

Let’s suppose that we are creating a new and shiny social network, where our users can post articles with related

media like, pictures, videos, or even music. Users can comment on posts and give points for ratings. There will be a

feed of posts that users will see and be able to interact with on the main website landing page. This doesn’t sound

really complex (at first), but for the sake of simplicity, let’s stop there (we could delve into custom user feeds

affected by relationships, but it exceeds the goal of this article).

So, how do we store this and where?

Many of you might have experience on SQL databases or at least have notion of relational modeling of data and

you might be tempted to start drawing something like this:

A perfectly normalized and pretty data structure… that doesn't scale.

Don’t get me wrong, I’ve worked with SQL databases all my life, they are great, but like every pattern, practice and

software platform, it’s not perfect for every scenario.

Why isn't SQL the best choice in this scenario? Let’s look at the structure of a single post, if I wanted to show that

post in a website or application, I’d have to do a query with… 8 table joins (!) just to show one single post, now,

picture a stream of posts that dynamically load and appear on the screen and you might see where I am going.

We could, of course, use a humongous SQL instance with enough power to solve thousands of queries with these

many joins to serve our content, but truly, why would we when a simpler solution exists?

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-social-media-apps.md
https://github.com/ealsur
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/mimig1
https://github.com/garyericson
https://en.wikipedia.org/wiki/Relational_model

The NoSQL road

{

 "id":"ew12-res2-234e-544f",

 "title":"post title",

 "date":"2016-01-01",

 "body":"this is an awesome post stored on NoSQL",

 "createdBy":User,

 "images":["http://myfirstimage.png","http://mysecondimage.png"],

 "videos":[

 {"url":"http://myfirstvideo.mp4", "title":"The first video"},

 {"url":"http://mysecondvideo.mp4", "title":"The second video"}

],

 "audios":[

 {"url":"http://myfirstaudio.mp3", "title":"The first audio"},

 {"url":"http://mysecondaudio.mp3", "title":"The second audio"}

]

}

{

 "id":"1234-asd3-54ts-199a",

 "title":"Awesome post!",

 "date":"2016-01-02",

 "createdBy":User2,

 "parent":"ew12-res2-234e-544f"

}

{

 "id":"asd2-fee4-23gc-jh67",

 "title":"Ditto!",

 "date":"2016-01-03",

 "createdBy":User3,

 "parent":"ew12-res2-234e-544f"

}

{

 "id":"dfe3-thf5-232s-dse4",

 "post":"ew12-res2-234e-544f",

 "comments":2,

 "likes":10,

 "points":200

}

There are special graph databases that can run on Azure but they are not inexpensive and require IaaS services

(Infrastructure-as-a-Service, Virtual Machines mainly) and maintenance. I’m going to aim this article at a lower cost

solution that will work for most scenarios, running on Azure’s NoSQL database DocumentDB. Using a NoSQL

approach, storing data in JSON format and applying denormalization, our previously complicated post can be

transformed into a single Document:

And it can be obtained with a single query, and with no joins. This is much more simple and straightforward, and,

budget-wise, it requires fewer resources to achieve a better result.

Azure DocumentDB makes sure that all the properties are indexed with its automatic indexing, which can even be

customized. The schema-free approach lets us store Documents with different and dynamic structures, maybe

tomorrow we want posts to have a list of categories or hashtags associated with them, DocumentDB will handle the

new Documents with the added attributes with no extra work required by us.

Comments on a post can be treated as just other posts with a parent property (this simplifies our object mapping).

And all social interactions can be stored on a separate object as counters:

http://neo4j.com/developer/guide-cloud-deployment/#_windows_azure
https://azure.microsoft.com/services/documentdb/
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/Denormalization
https://en.wikipedia.org/wiki/Document-oriented_database
file:///D:/azure-docs-pr/_site/azure/.tmp/documentdb/documentdb-indexing.html

[

 {"relevance":9, "post":"ew12-res2-234e-544f"},

 {"relevance":8, "post":"fer7-mnb6-fgh9-2344"},

 {"relevance":7, "post":"w34r-qeg6-ref6-8565"}

]

{

 "id":"234d-sd23-rrf2-552d",

 "followersOf": "dse4-qwe2-ert4-aad2",

 "followers":[

 "ewr5-232d-tyrg-iuo2",

 "qejh-2345-sdf1-ytg5",

 //...

 "uie0-4tyg-3456-rwjh"

]

}

{

 "id":"234d-sd23-rrf2-552d",

 "user": "dse4-qwe2-ert4-aad2",

 "followers":55230,

 "totalPosts":452,

 "totalPoints":11342

}

The “Ladder” pattern and data duplication

Creating feeds is just a matter of creating documents that can hold a list of post ids with a given relevance order:

We could have a “latest” stream with posts ordered by creation date, a “hottest” stream with those posts with more

likes in the last 24 hours, we could even implement a custom stream for each user based on logic like followers and

interests, and it would still be a list of posts. It’s a matter of how to build these lists, but the reading performance

remains unhindered. Once we acquire one of these lists, we issue a single query to DocumentDB using the IN

operator to obtain pages of posts at a time.

The feed streams could be built using Azure App Services’ background processes: Webjobs. Once a post is created,

background processing can be triggered by using Azure Storage Queues and Webjobs triggered using the Azure

Webjobs SDK, implementing the post propagation inside streams based on our own custom logic.

Points and likes over a post can be processed in a deferred manner using this same technique to create an

eventually consistent environment.

Followers are trickier. DocumentDB has a document size limit of 512Kb, so you may think about storing followers

as a document with this structure:

This might work for a user with a few thousands followers, but if some celebrity joins our ranks, this approach will

eventually hit the document size cap.

To solve this, we can use a mixed approach. As part of the User Statistics document we can store the number of

followers:

And the actual graph of followers can be stored on Azure Storage Tables using an Extension that allows for simple

"A-follows-B" storage and retrieval. This way we can delegate the retrieval process of the exact followers list (when

we need it) to Azure Storage Tables but for a quick numbers lookup, we keep using DocumentDB.

As you might have noticed in the JSON document that references a post, there are multiple occurrences of a user.

And you’d have guessed right, this means that the information that represents a user, given this denormalization,

might be present in more than one place.

https://azure.microsoft.com/services/app-service/
file:///D:/azure-docs-pr/_site/azure/.tmp/app-service-web/web-sites-create-web-jobs.html
https://azure.microsoft.com/services/storage/
file:///D:/azure-docs-pr/_site/azure/.tmp/storage/storage-dotnet-how-to-use-queues.html
file:///D:/azure-docs-pr/_site/azure/.tmp/app-service-web/websites-dotnet-webjobs-sdk.html
https://github.com/richorama/AzureStorageExtensions#azuregraphstore

{

 "id":"dse4-qwe2-ert4-aad2",

 "name":"John",

 "surname":"Doe",

 "address":"742 Evergreen Terrace",

 "birthday":"1983-05-07",

 "email":"john@doe.com",

 "twitterHandle":"@john",

 "username":"johndoe",

 "password":"some_encrypted_phrase",

 "totalPoints":100,

 "totalPosts":24

}

In order to allow for faster queries, we incur data duplication. The problem with this side-effect is that if by some

action, a user’s data changes, we need to find all the activities he ever did and update them all. Doesn’t sound very

practical, right?

Graph databases solve it in their own way, we are going to solve it by identifying the Key attributes of a user that

we show in our application for each activity. If we visually show a post in our application and show just the

creator’s name and picture, why store all of the user’s data in the “createdBy” attribute? If for each comment we just

show the user’s picture, we don’t really need the rest of his information. That’s where something I call the “Ladder

pattern” comes into play.

Let’s take user information as an example:

By looking at this information, we can quickly detect which is critical information and which isn’t, thus creating a

“Ladder”:

The smallest step is called a UserChunk, the minimal piece of information that identifies a user and it’s used for

data duplication. By reducing the size of the duplicated data to only the information we will “show”, we reduce the

possibility of massive updates.

The middle step is called the user, it’s the full data that will be used on most performance-dependent queries on

DocumentDB, the most accessed and critical. It includes the information represented by a UserChunk.

The largest is the Extended User. It includes all the critical user information plus other data that doesn’t really

require to be read quickly or it’s usage is eventual (like the login process). This data can be stored outside of

DocumentDB, in Azure SQL Database or Azure Storage Tables.

Why would we split the user and even store this information in different places? Because storage space in

DocumentDB is not infinite and from a performance point of view, the bigger the documents, the costlier the

queries. Keep documents slim, with the right information to do all your performance-dependent queries for your

social network, and store the other extra information for eventual scenarios like, full profile edits, logins, even data

mining for usage analytics and Big Data initiatives. We really don’t care if the data gathering for data mining is

slower because it’s running on Azure SQL Database, we do have concern though that our users have a fast and slim

experience. A user, stored on DocumentDB, would look like this:

{

 "id":"dse4-qwe2-ert4-aad2",

 "name":"John",

 "surname":"Doe",

 "username":"johndoe"

 "email":"john@doe.com",

 "twitterHandle":"@john"

}

{

 "id":"1234-asd3-54ts-199a",

 "title":"Awesome post!",

 "date":"2016-01-02",

 "createdBy":{

 "id":"dse4-qwe2-ert4-aad2",

 "username":"johndoe"

 }

}

The search box

The underlying knowledge

And a Post would look like:

And when an edit arises where one of the attributes of the chunk is affected, it’s easy to find the affected

documents by using queries that point to the indexed attributes (SELECT * FROM posts p WHERE p.createdBy.id ==

“edited_user_id”) and then updating the chunks.

Users will generate, luckily, a lot of content. And we should be able to provide the ability to search and find content

that might not be directly in their content streams, maybe because we don’t follow the creators, or maybe we are

just trying to find that old post we did 6 months ago.

Thankfully, and because we are using Azure DocumentDB, we can easily implement a search engine using Azure

Search in a couple of minutes and without typing a single line of code (other than obviously, the search process

and UI).

Why is this so easy?

Azure Search implements what they call Indexers, background processes that hook in your data repositories and

automagically add, update or remove your objects in the indexes. They support an Azure SQL Database indexers,

Azure Blobs indexers and thankfully, Azure DocumentDB indexers. The transition of information from DocumentDB

to Azure Search is straightforward, as both store information in JSON format, we just need to create our Index and

map which attributes from our Documents we want indexed and that’s it, in a matter of minutes (depends on the

size of our data), all our content will be available to be searched upon, by the best Search-as-a-Service solution in

cloud infrastructure.

For more information about Azure Search, you can visit the Hitchhiker’s Guide to Search.

After storing all this content that grows and grows every day, we might find ourselves thinking: What can I do with

all this stream of information from my users?

The answer is straightforward: Put it to work and learn from it.

But, what can we learn? A few easy examples include sentiment analysis, content recommendations based on a

user’s preferences or even an automated content moderator that ensures that all the content published by our

social network is safe for the family.

Now that I got you hooked, you’ll probably think you need some PhD in math science to extract these patterns and

https://azure.microsoft.com/services/search/
https://msdn.microsoft.com/library/azure/dn946891.aspx
https://blogs.msdn.microsoft.com/kaevans/2015/03/06/indexing-azure-sql-database-with-azure-search/
file:///D:/azure-docs-pr/_site/azure/.tmp/search/search-howto-indexing-azure-blob-storage.html
file:///D:/azure-docs-pr/_site/azure/.tmp/search/search-create-index-portal.html
https://blogs.msdn.microsoft.com/mvpawardprogram/2016/02/02/a-hitchhikers-guide-to-search/
https://en.wikipedia.org/wiki/Sentiment_analysis

Conclusion

Next steps

information out of simple databases and files, but you’d be wrong.

Azure Machine Learning, part of the Cortana Intelligence Suite, is the a fully managed cloud service that lets you

create workflows using algorithms in a simple drag-and-drop interface, code your own algorithms in R or use

some of the already-built and ready to use APIs such as: Text Analytics, Content Moderator or Recommendations.

To achieve any of these Machine Learning scenarios, we can use Azure Data Lake to ingest the information from

different sources, and use U-SQL to process the information and generate an output that can be processed by

Azure Machine Learning.

Another available option is to use Microsoft Cognitive Services to analyze our users content; not only can we

understand them better (through analyzing what they write with Text Analytics API) , but we could also detect

unwanted or mature content and act accordingly with Computer Vision API. Cognitive Services include a lot of out-

of-the-box solutions that don't require any kind of Machine Learning knowledge to use.

This article tries to shed some light into the alternatives of creating social networks completely on Azure with low-

cost services and providing great results by encouraging the use of a multi-layered storage solution and data

distribution called “Ladder”.

The truth is that there is no silver bullet for this kind of scenarios, it’s the synergy created by the combination of

great services that allow us to build great experiences: the speed and freedom of Azure DocumentDB to provide a

great social application, the intelligence behind a first-class search solution like Azure Search, the flexibility of Azure

App Services to host not even language-agnostic applications but powerful background processes and the

expandable Azure Storage and Azure SQL Database for storing massive amounts of data and the analytic power of

Azure Machine Learning to create knowledge and intelligence that can provide feedback to our processes and help

us deliver the right content to the right users.

Learn more about data modeling by reading the Modeling data in DocumentDB article. If you're interested in other

use cases for DocumentDB, see Common DocumentDB use cases.

Or learn more about DocumentDB by following the DocumentDB Learning Path.

https://azure.microsoft.com/services/machine-learning/
https://www.microsoft.com/en/server-cloud/cortana-analytics-suite/overview.aspx
https://en.wikipedia.org/wiki/R_(programming_language)
https://gallery.cortanaanalytics.com/MachineLearningAPI/Text-Analytics-2
https://www.microsoft.com/moderator
https://gallery.cortanaanalytics.com/MachineLearningAPI/Recommendations-2
https://azure.microsoft.com/services/data-lake-store/
https://azure.microsoft.com/documentation/videos/data-lake-u-sql-query-execution/
https://www.microsoft.com/cognitive-services
https://www.microsoft.com/cognitive-services/en-us/text-analytics-api
https://www.microsoft.com/cognitive-services/en-us/computer-vision-api
https://azure.microsoft.com/documentation/learning-paths/documentdb/

Andrew Hoh • mimig • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • Carolyn Gronlund • Michiel Staessen • arramac • v-aljenk

• Ross McAllister • Dene Hager

NoSQL tutorial: Build a DocumentDB C# console
application
11/22/2016 • 15 min to read • Edit on GitHub

Contributors

Prerequisites

Step 1: Create a DocumentDB account

Welcome to the NoSQL tutorial for the Azure DocumentDB .NET SDK! After following this tutorial, you'll have a

console application that creates and queries DocumentDB resources.

We'll cover:

Creating and connecting to a DocumentDB account

Configuring your Visual Studio Solution

Creating an online database

Creating a collection

Creating JSON documents

Querying the collection

Replacing a document

Deleting a document

Deleting the database

Don't have time? Don't worry! The complete solution is available on GitHub. Jump to the Get the complete

solution section for quick instructions.

Afterwards, please use the voting buttons at the top or bottom of this page to give us feedback. If you'd like us to

contact you directly, feel free to include your email address in your comments.

Now let's get started!

Please make sure you have the following:

An active Azure account. If you don't have one, you can sign up for a free account.

Visual Studio 2013 / Visual Studio 2015.

.NET Framework 4.6

Alternatively, you can use the Azure DocumentDB Emulator for this tutorial.

Let's create a DocumentDB account. If you already have an account you want to use, you can skip ahead to Setup

your Visual Studio Solution. If you are using the DocumentDB Emulator, please follow the steps at Azure

DocumentDB Emulator to setup the emulator and skip ahead to Setup your Visual Studio Solution.

1. Sign in to the Azure portal.

2. In the Jumpbar, click NewNew , click DatabasesDatabases , and then click NoSQL (DocumentDB)NoSQL (DocumentDB) .

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-get-started.md
https://github.com/AndrewHoh
https://github.com/mimig1
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/cjgronlund
https://github.com/mstaessen
https://github.com/arramac
https://github.com/v-aljenk
https://github.com/rmca14
https://github.com/deneha
https://github.com/Azure-Samples/documentdb-dotnet-getting-started
https://azure.microsoft.com/free/
http://www.visualstudio.com/
https://portal.azure.com/

3. In the New accountNew account blade, specify the desired configuration for the DocumentDB account.

In the IDID box, enter a name to identify the DocumentDB account. When the IDID is validated, a green

check mark appears in the IDID box. The IDID value becomes the host name within the URI. The IDID may

contain only lowercase letters, numbers, and the '-' character, and must be between 3 and 50 characters.

Note that documents.azure.com is appended to the endpoint name you choose, the result of which

becomes your DocumentDB account endpoint.

 Step 2: Setup your Visual Studio solution

In the NoSQL APINoSQL API box, select DocumentDBDocumentDB.

For Subscr iptionSubscr iption , select the Azure subscription that you want to use for the DocumentDB account. If

your account has only one subscription, that account is selected by default.

In Resource GroupResource Group, select or create a resource group for your DocumentDB account. By default, a new

resource group is created. For more information, see Using the Azure portal to manage your Azure

resources.

Use LocationLocation to specify the geographic location in which to host your DocumentDB account.

4. Once the new DocumentDB account options are configured, click CreateCreate. To check the status of the

deployment, check the Notifications hub.

5. After the DocumentDB account is created, it is ready for use with the default settings. To review the default

settings, click the NoSQL (DocumentDB)NoSQL (DocumentDB) icon on the Jumpbar, click your new account, and then click

Default ConsistencyDefault Consistency in the Resource Menu.

The default consistency of the DocumentDB account is set to SessionSession . You can adjust the default

consistency by clicking Default ConsistencyDefault Consistency in the resource menu. To learn more about the consistency

levels offered by DocumentDB, see Consistency levels in DocumentDB.

1. Open Visual S tudio 2015Visual S tudio 2015 on your computer.

2. On the F ileF ile menu, select NewNew , and then choose ProjectProject.

3. In the New ProjectNew Project dialog, select TemplatesTemplates / Visual C#Visual C# / Console ApplicationConsole Application , name your project, and

then click OKOK.

file:///D:/azure-docs-pr/_site/azure/.tmp/azure-portal/resource-group-portal.html

4. In the Solution ExplorerSolution Explorer , right click on your new console application, which is under your Visual Studio

solution.

5. Then without leaving the menu, click on Manage NuGet Packages...Manage NuGet Packages...

6. In the NugetNuget tab, click BrowseBrowse, and type azure documentdbazure documentdb in the search box.

7. Within the results, find Microsoft.Azure.DocumentDBMicrosoft.Azure.DocumentDB and click InstallInstall . The package ID for the DocumentDB

Client Library is Microsoft.Azure.DocumentDB

Great! Now that we finished the setup, let's start writing some code. You can find a completed code project of this

https://www.nuget.org/packages/Microsoft.Azure.DocumentDB

 Step 3: Connect to a DocumentDB account

using System;

using System.Linq;

using System.Threading.Tasks;

// ADD THIS PART TO YOUR CODE

using System.Net;

using Microsoft.Azure.Documents;

using Microsoft.Azure.Documents.Client;

using Newtonsoft.Json;

IMPORTANT

public class Program

{

 // ADD THIS PART TO YOUR CODE

 private const string EndpointUri = "<your endpoint URI>";

 private const string PrimaryKey = "<your key>";

 private DocumentClient client;

tutorial at GitHub.

First, add these references to the beginning of your C# application, in the Program.cs file:

In order to complete this NoSQL tutorial, make sure you add the dependencies above.

Now, add these two constants and your client variable underneath your public class Program.

Next, head to the Azure Portal to retrieve your URI and primary key. The DocumentDB URI and primary key are

necessary for your application to understand where to connect to, and for DocumentDB to trust your application's

connection.

In the Azure Portal, navigate to your DocumentDB account, and then click KeysKeys .

Copy the URI from the portal and paste it into <your endpoint URI> in the program.cs file. Then copy the

PRIMARY KEY from the portal and paste it into <your key> .

We'll start the getting started application by creating a new instance of the DocumentClientDocumentClient.

https://github.com/Azure-Samples/documentdb-dotnet-getting-started/blob/master/src/Program.cs
https://portal.azure.com

static void Main(string[] args)

{

}

// ADD THIS PART TO YOUR CODE

private async Task GetStartedDemo()

{

 this.client = new DocumentClient(new Uri(EndpointUri), PrimaryKey);

}

static void Main(string[] args)

{

 // ADD THIS PART TO YOUR CODE

 try

 {

 Program p = new Program();

 p.GetStartedDemo().Wait();

 }

 catch (DocumentClientException de)

 {

 Exception baseException = de.GetBaseException();

 Console.WriteLine("{0} error occurred: {1}, Message: {2}", de.StatusCode, de.Message,

baseException.Message);

 }

 catch (Exception e)

 {

 Exception baseException = e.GetBaseException();

 Console.WriteLine("Error: {0}, Message: {1}", e.Message, baseException.Message);

 }

 finally

 {

 Console.WriteLine("End of demo, press any key to exit.");

 Console.ReadKey();

 }

Step 4: Create a database

// ADD THIS PART TO YOUR CODE

private void WriteToConsoleAndPromptToContinue(string format, params object[] args)

{

 Console.WriteLine(format, args);

 Console.WriteLine("Press any key to continue ...");

 Console.ReadKey();

}

Below the MainMain method, add this new asynchronous task called GetS tar tedDemoGetS tar tedDemo, which will instantiate our

new DocumentClientDocumentClient.

Add the following code to run your asynchronous task from your MainMain method. The MainMain method will catch

exceptions and write them to the console.

Press F5F5 to run your application.

Congratulations! You have successfully connected to a DocumentDB account, let's now take a look at working

with DocumentDB resources.

Before you add the code for creating a database, add a helper method for writing to the console.

Copy and paste the Wr iteToConsoleAndPromptToContinueWriteToConsoleAndPromptToContinue method underneath the GetS tar tedDemoGetS tar tedDemo

method.

Your DocumentDB database can be created by using the CreateDatabaseAsync method of the DocumentClientDocumentClient

https://msdn.microsoft.com/library/microsoft.azure.documents.client.documentclient.createdatabaseasync.aspx

// ADD THIS PART TO YOUR CODE

private async Task CreateDatabaseIfNotExists(string databaseName)

{

 // Check to verify a database with the id=FamilyDB does not exist

 try

 {

 await this.client.ReadDatabaseAsync(UriFactory.CreateDatabaseUri(databaseName));

 this.WriteToConsoleAndPromptToContinue("Found {0}", databaseName);

 }

 catch (DocumentClientException de)

 {

 // If the database does not exist, create a new database

 if (de.StatusCode == HttpStatusCode.NotFound)

 {

 await this.client.CreateDatabaseAsync(new Database { Id = databaseName });

 this.WriteToConsoleAndPromptToContinue("Created {0}", databaseName);

 }

 else

 {

 throw;

 }

 }

}

private async Task GetStartedDemo()

{

 this.client = new DocumentClient(new Uri(EndpointUri), PrimaryKey);

 // ADD THIS PART TO YOUR CODE

 await this.CreateDatabaseIfNotExists("FamilyDB_oa");

Step 5: Create a collection

WARNING

class. A database is the logical container of JSON document storage partitioned across collections.

Copy and paste the CreateDatabaseIfNotExistsCreateDatabaseIfNotExists method underneath the

WriteToConsoleAndPromptToContinueWriteToConsoleAndPromptToContinue method.

Copy and paste the following code to your GetS tar tedDemoGetS tar tedDemo method underneath the client creation. This will

create a database named FamilyDB.

Press F5F5 to run your application.

Congratulations! You have successfully created a DocumentDB database.

CreateDocumentCollectionAsyncCreateDocumentCollectionAsync will create a new collection with reserved throughput, which has pricing implications.

For more details, please visit our pricing page.

A collection can be created by using the CreateDocumentCollectionAsync method of the DocumentClientDocumentClient class.

A collection is a container of JSON documents and associated JavaScript application logic.

Copy and paste the CreateDocumentCollectionIfNotExistsCreateDocumentCollectionIfNotExists method underneath your

CreateDatabaseIfNotExistsCreateDatabaseIfNotExists method.

https://azure.microsoft.com/pricing/details/documentdb/
https://msdn.microsoft.com/library/microsoft.azure.documents.client.documentclient.createdocumentcollectionasync.aspx

// ADD THIS PART TO YOUR CODE

private async Task CreateDocumentCollectionIfNotExists(string databaseName, string collectionName)

{

 try

 {

 await this.client.ReadDocumentCollectionAsync(UriFactory.CreateDocumentCollectionUri(databaseName,

collectionName));

 this.WriteToConsoleAndPromptToContinue("Found {0}", collectionName);

 }

 catch (DocumentClientException de)

 {

 // If the document collection does not exist, create a new collection

 if (de.StatusCode == HttpStatusCode.NotFound)

 {

 DocumentCollection collectionInfo = new DocumentCollection();

 collectionInfo.Id = collectionName;

 // Configure collections for maximum query flexibility including string range queries.

 collectionInfo.IndexingPolicy = new IndexingPolicy(new RangeIndex(DataType.String) { Precision = -1

});

 // Here we create a collection with 400 RU/s.

 await this.client.CreateDocumentCollectionAsync(

 UriFactory.CreateDatabaseUri(databaseName),

 collectionInfo,

 new RequestOptions { OfferThroughput = 400 });

 this.WriteToConsoleAndPromptToContinue("Created {0}", collectionName);

 }

 else

 {

 throw;

 }

 }

}

 this.client = new DocumentClient(new Uri(EndpointUri), PrimaryKey);

 await this.CreateDatabaseIfNotExists("FamilyDB_oa");

 // ADD THIS PART TO YOUR CODE

 await this.CreateDocumentCollectionIfNotExists("FamilyDB_oa", "FamilyCollection_oa");

Step 6: Create JSON documents

Copy and paste the following code to your GetS tar tedDemoGetS tar tedDemo method underneath the database creation. This will

create a document collection named FamilyCollection_oa.

Press F5F5 to run your application.

Congratulations! You have successfully created a DocumentDB document collection.

A document can be created by using the CreateDocumentAsync method of the DocumentClientDocumentClient class.

Documents are user defined (arbitrary) JSON content. We can now insert one or more documents. If you already

have data you'd like to store in your database, you can use DocumentDB's Data Migration tool.

First, we need to create a FamilyFamily class that will represent objects stored within DocumentDB in this sample. We

will also create ParentParent, ChildChild , PetPet, AddressAddress subclasses that are used within FamilyFamily . Note that documents must

have an IdId property serialized as idid in JSON. Create these classes by adding the following internal sub-classes

after the GetS tar tedDemoGetS tar tedDemo method.

Copy and paste the FamilyFamily , ParentParent, ChildChild , PetPet, and AddressAddress classes underneath the

https://msdn.microsoft.com/library/microsoft.azure.documents.client.documentclient.createdocumentasync.aspx

private void WriteToConsoleAndPromptToContinue(string format, params object[] args)

{

 Console.WriteLine(format, args);

 Console.WriteLine("Press any key to continue ...");

 Console.ReadKey();

}

// ADD THIS PART TO YOUR CODE

public class Family

{

 [JsonProperty(PropertyName = "id")]

 public string Id { get; set; }

 public string LastName { get; set; }

 public Parent[] Parents { get; set; }

 public Child[] Children { get; set; }

 public Address Address { get; set; }

 public bool IsRegistered { get; set; }

 public override string ToString()

 {

 return JsonConvert.SerializeObject(this);

 }

}

public class Parent

{

 public string FamilyName { get; set; }

 public string FirstName { get; set; }

}

public class Child

{

 public string FamilyName { get; set; }

 public string FirstName { get; set; }

 public string Gender { get; set; }

 public int Grade { get; set; }

 public Pet[] Pets { get; set; }

}

public class Pet

{

 public string GivenName { get; set; }

}

public class Address

{

 public string State { get; set; }

 public string County { get; set; }

 public string City { get; set; }

}

WriteToConsoleAndPromptToContinueWriteToConsoleAndPromptToContinue method.

Copy and paste the CreateFamilyDocumentIfNotExistsCreateFamilyDocumentIfNotExists method underneath your

CreateDocumentCollectionIfNotExistsCreateDocumentCollectionIfNotExists method.

// ADD THIS PART TO YOUR CODE

private async Task CreateFamilyDocumentIfNotExists(string databaseName, string collectionName, Family family)

{

 try

 {

 await this.client.ReadDocumentAsync(UriFactory.CreateDocumentUri(databaseName, collectionName,

family.Id));

 this.WriteToConsoleAndPromptToContinue("Found {0}", family.Id);

 }

 catch (DocumentClientException de)

 {

 if (de.StatusCode == HttpStatusCode.NotFound)

 {

 await this.client.CreateDocumentAsync(UriFactory.CreateDocumentCollectionUri(databaseName,

collectionName), family);

 this.WriteToConsoleAndPromptToContinue("Created Family {0}", family.Id);

 }

 else

 {

 throw;

 }

 }

}

await this.CreateDatabaseIfNotExists("FamilyDB_oa");

await this.CreateDocumentCollectionIfNotExists("FamilyDB_oa", "FamilyCollection_oa");

// ADD THIS PART TO YOUR CODE

Family andersenFamily = new Family

{

 Id = "Andersen.1",

 LastName = "Andersen",

 Parents = new Parent[]

 {

 new Parent { FirstName = "Thomas" },

 new Parent { FirstName = "Mary Kay" }

 },

 Children = new Child[]

 {

 new Child

 {

 FirstName = "Henriette Thaulow",

 Gender = "female",

 Grade = 5,

 Pets = new Pet[]

 {

 new Pet { GivenName = "Fluffy" }

 }

 }

 },

 Address = new Address { State = "WA", County = "King", City = "Seattle" },

 IsRegistered = true

};

await this.CreateFamilyDocumentIfNotExists("FamilyDB_oa", "FamilyCollection_oa", andersenFamily);

Family wakefieldFamily = new Family

{

 Id = "Wakefield.7",

 LastName = "Wakefield",

 Parents = new Parent[]

And insert two documents, one each for the Andersen Family and the Wakefield Family.

Copy and paste the following code to your GetS tar tedDemoGetS tar tedDemo method underneath the document collection

creation.

 Parents = new Parent[]

 {

 new Parent { FamilyName = "Wakefield", FirstName = "Robin" },

 new Parent { FamilyName = "Miller", FirstName = "Ben" }

 },

 Children = new Child[]

 {

 new Child

 {

 FamilyName = "Merriam",

 FirstName = "Jesse",

 Gender = "female",

 Grade = 8,

 Pets = new Pet[]

 {

 new Pet { GivenName = "Goofy" },

 new Pet { GivenName = "Shadow" }

 }

 },

 new Child

 {

 FamilyName = "Miller",

 FirstName = "Lisa",

 Gender = "female",

 Grade = 1

 }

 },

 Address = new Address { State = "NY", County = "Manhattan", City = "NY" },

 IsRegistered = false

};

await this.CreateFamilyDocumentIfNotExists("FamilyDB_oa", "FamilyCollection_oa", wakefieldFamily);

Step 7: Query DocumentDB resources

Press F5F5 to run your application.

Congratulations! You have successfully created two DocumentDB documents.

DocumentDB supports rich queries against JSON documents stored in each collection. The following sample code

shows various queries - using both DocumentDB SQL syntax as well as LINQ - that we can run against the

documents we inserted in the previous step.

Copy and paste the ExecuteS impleQueryExecuteS impleQuery method underneath your CreateFamilyDocumentIfNotExistsCreateFamilyDocumentIfNotExists

method.

// ADD THIS PART TO YOUR CODE

private void ExecuteSimpleQuery(string databaseName, string collectionName)

{

 // Set some common query options

 FeedOptions queryOptions = new FeedOptions { MaxItemCount = -1 };

 // Here we find the Andersen family via its LastName

 IQueryable<Family> familyQuery = this.client.CreateDocumentQuery<Family>(

 UriFactory.CreateDocumentCollectionUri(databaseName, collectionName), queryOptions)

 .Where(f => f.LastName == "Andersen");

 // The query is executed synchronously here, but can also be executed asynchronously via the

IDocumentQuery<T> interface

 Console.WriteLine("Running LINQ query...");

 foreach (Family family in familyQuery)

 {

 Console.WriteLine("\tRead {0}", family);

 }

 // Now execute the same query via direct SQL

 IQueryable<Family> familyQueryInSql = this.client.CreateDocumentQuery<Family>(

 UriFactory.CreateDocumentCollectionUri(databaseName, collectionName),

 "SELECT * FROM Family WHERE Family.LastName = 'Andersen'",

 queryOptions);

 Console.WriteLine("Running direct SQL query...");

 foreach (Family family in familyQueryInSql)

 {

 Console.WriteLine("\tRead {0}", family);

 }

 Console.WriteLine("Press any key to continue ...");

 Console.ReadKey();

}

await this.CreateFamilyDocumentIfNotExists("FamilyDB_oa", "FamilyCollection_oa", wakefieldFamily);

// ADD THIS PART TO YOUR CODE

this.ExecuteSimpleQuery("FamilyDB_oa", "FamilyCollection_oa");

Copy and paste the following code to your GetS tar tedDemoGetS tar tedDemo method underneath the second document creation.

Press F5F5 to run your application.

Congratulations! You have successfully queried against a DocumentDB collection.

The following diagram illustrates how the DocumentDB SQL query syntax is called against the collection you

created, and the same logic applies to the LINQ query as well.

The FROM keyword is optional in the query because DocumentDB queries are already scoped to a single

Step 8: Replace JSON document

// ADD THIS PART TO YOUR CODE

private async Task ReplaceFamilyDocument(string databaseName, string collectionName, string familyName, Family

updatedFamily)

{

 try

 {

 await this.client.ReplaceDocumentAsync(UriFactory.CreateDocumentUri(databaseName, collectionName,

familyName), updatedFamily);

 this.WriteToConsoleAndPromptToContinue("Replaced Family {0}", familyName);

 }

 catch (DocumentClientException de)

 {

 throw;

 }

}

await this.CreateFamilyDocumentIfNotExists("FamilyDB_oa", "FamilyCollection_oa", wakefieldFamily);

this.ExecuteSimpleQuery("FamilyDB_oa", "FamilyCollection_oa");

// ADD THIS PART TO YOUR CODE

// Update the Grade of the Andersen Family child

andersenFamily.Children[0].Grade = 6;

await this.ReplaceFamilyDocument("FamilyDB_oa", "FamilyCollection_oa", "Andersen.1", andersenFamily);

this.ExecuteSimpleQuery("FamilyDB_oa", "FamilyCollection_oa");

Step 9: Delete JSON document

collection. Therefore, "FROM Families f" can be swapped with "FROM root r", or any other variable name you

choose. DocumentDB will infer that Families, root, or the variable name you chose, reference the current collection

by default.

DocumentDB supports replacing JSON documents.

Copy and paste the ReplaceFamilyDocumentReplaceFamilyDocument method underneath your ExecuteS impleQueryExecuteS impleQuery method.

Copy and paste the following code to your GetS tar tedDemoGetS tar tedDemo method underneath the query execution. After

replacing the document, this will run the same query again to view the changed document.

Press F5F5 to run your application.

Congratulations! You have successfully replaced a DocumentDB document.

DocumentDB supports deleting JSON documents.

Copy and paste the DeleteFamilyDocumentDeleteFamilyDocument method underneath your ReplaceFamilyDocumentReplaceFamilyDocument method.

// ADD THIS PART TO YOUR CODE

private async Task DeleteFamilyDocument(string databaseName, string collectionName, string documentName)

{

 try

 {

 await this.client.DeleteDocumentAsync(UriFactory.CreateDocumentUri(databaseName, collectionName,

documentName));

 Console.WriteLine("Deleted Family {0}", documentName);

 }

 catch (DocumentClientException de)

 {

 throw;

 }

}

await this.ReplaceFamilyDocument("FamilyDB_oa", "FamilyCollection_oa", "Andersen.1", andersenFamily);

this.ExecuteSimpleQuery("FamilyDB_oa", "FamilyCollection_oa");

// ADD THIS PART TO CODE

await this.DeleteFamilyDocument("FamilyDB_oa", "FamilyCollection_oa", "Andersen.1");

Step 10: Delete the database

this.ExecuteSimpleQuery("FamilyDB_oa", "FamilyCollection_oa");

await this.DeleteFamilyDocument("FamilyDB_oa", "FamilyCollection_oa", "Andersen.1");

// ADD THIS PART TO CODE

// Clean up/delete the database

await this.client.DeleteDatabaseAsync(UriFactory.CreateDatabaseUri("FamilyDB_oa"));

Step 11: Run your C# console application all together!

Copy and paste the following code to your GetS tar tedDemoGetS tar tedDemo method underneath the second query execution.

Press F5F5 to run your application.

Congratulations! You have successfully deleted a DocumentDB document.

Deleting the created database will remove the database and all children resources (collections, documents, etc.).

Copy and paste the following code to your GetS tar tedDemoGetS tar tedDemo method underneath the document delete to delete

the entire database and all children resources.

Press F5F5 to run your application.

Congratulations! You have successfully deleted a DocumentDB database.

Hit F5 in Visual Studio to build the application in debug mode.

You should see the output of your get started app. The output will show the results of the queries we added and

should match the example text below.

Created FamilyDB_oa

Press any key to continue ...

Created FamilyCollection_oa

Press any key to continue ...

Created Family Andersen.1

Press any key to continue ...

Created Family Wakefield.7

Press any key to continue ...

Running LINQ query...

 Read {"id":"Andersen.1","LastName":"Andersen","District":"WA5","Parents":

[{"FamilyName":null,"FirstName":"Thomas"},{"FamilyName":null,"FirstName":"Mary Kay"}],"Children":

[{"FamilyName":null,"FirstName":"Henriette Thaulow","Gender":"female","Grade":5,"Pets":

[{"GivenName":"Fluffy"}]}],"Address":{"State":"WA","County":"King","City":"Seattle"},"IsRegistered":true}

Running direct SQL query...

 Read {"id":"Andersen.1","LastName":"Andersen","District":"WA5","Parents":

[{"FamilyName":null,"FirstName":"Thomas"},{"FamilyName":null,"FirstName":"Mary Kay"}],"Children":

[{"FamilyName":null,"FirstName":"Henriette Thaulow","Gender":"female","Grade":5,"Pets":

[{"GivenName":"Fluffy"}]}],"Address":{"State":"WA","County":"King","City":"Seattle"},"IsRegistered":true}

Replaced Family Andersen.1

Press any key to continue ...

Running LINQ query...

 Read {"id":"Andersen.1","LastName":"Andersen","District":"WA5","Parents":

[{"FamilyName":null,"FirstName":"Thomas"},{"FamilyName":null,"FirstName":"Mary Kay"}],"Children":

[{"FamilyName":null,"FirstName":"Henriette Thaulow","Gender":"female","Grade":6,"Pets":

[{"GivenName":"Fluffy"}]}],"Address":{"State":"WA","County":"King","City":"Seattle"},"IsRegistered":true}

Running direct SQL query...

 Read {"id":"Andersen.1","LastName":"Andersen","District":"WA5","Parents":

[{"FamilyName":null,"FirstName":"Thomas"},{"FamilyName":null,"FirstName":"Mary Kay"}],"Children":

[{"FamilyName":null,"FirstName":"Henriette Thaulow","Gender":"female","Grade":6,"Pets":

[{"GivenName":"Fluffy"}]}],"Address":{"State":"WA","County":"King","City":"Seattle"},"IsRegistered":true}

Deleted Family Andersen.1

End of demo, press any key to exit.

Get the complete NoSQL tutorial solution

Next steps

Congratulations! You've completed this NoSQL tutorial and have a working C# console application!

To build the GetStarted solution that contains all the samples in this article, you will need the following:

An active Azure account. If you don't have one, you can sign up for a free account.

A DocumentDB account.

The GetStarted solution available on GitHub.

To restore the references to the DocumentDB .NET SDK in Visual Studio, right-click the GetS tar tedGetS tar ted solution in

Solution Explorer, and then click Enable NuGet Package RestoreEnable NuGet Package Restore. Next, in the App.config file, update the

EndpointUrl and AuthorizationKey values as described in Connect to a DocumentDB account.

Want a more complex ASP.NET MVC NoSQL tutorial? See Build a web application with ASP.NET MVC using

DocumentDB.

Want to perform scale and performance testing with DocumentDB? See Performance and Scale Testing with

Azure DocumentDB

Learn how to monitor a DocumentDB account.

Run queries against our sample dataset in the Query Playground.

Learn more about the programming model in the Develop section of the DocumentDB documentation page.

https://azure.microsoft.com/free/
https://github.com/Azure-Samples/documentdb-dotnet-getting-started
https://www.documentdb.com/sql/demo
https://azure.microsoft.com/documentation/services/documentdb/

arramac • mimig

NoSQL tutorial: Build a DocumentDB C# console
application on .NET Core
11/22/2016 • 15 min to read • Edit on GitHub

Contributors

Prerequisites

Step 1: Create a DocumentDB account

Welcome to the NoSQL tutorial for the Azure DocumentDB .NET Core SDK! After following this tutorial, you'll have

a console application that creates and queries DocumentDB resources.

We'll cover:

Creating and connecting to a DocumentDB account

Configuring your Visual Studio Solution

Creating an online database

Creating a collection

Creating JSON documents

Querying the collection

Replacing a document

Deleting a document

Deleting the database

Don't have time? Don't worry! The complete solution is available on GitHub. Jump to the Get the complete

solution section for quick instructions.

Afterwards, please use the voting buttons at the top or bottom of this page to give us feedback. If you'd like us to

contact you directly, feel free to include your email address in your comments.

Now let's get started!

Please make sure you have the following:

An active Azure account. If you don't have one, you can sign up for a free account.

Visual Studio 2015 Update 3 and .NET Core 1.0.1 - VS 2015 Tooling Preview 2

Alternatively, you can use the Azure DocumentDB Emulator for this tutorial.

If you're working on MacOS or Linux, you can develop .NET Core apps from the command-line by

installing the .NET Core SDK for the plaform of your choice.

If you're working on Windows, you can develop .NET Core apps from the command-line by installing the

.NET Core SDK.

You can use your own editor, or download Visual Studio Code which is free and works on Windows,

Linux, and MacOS.

Let's create a DocumentDB account. If you already have an account you want to use, you can skip ahead to Setup

your Visual Studio Solution. If you are using the DocumentDB Emulator, please follow the steps at Azure

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-dotnetcore-get-started.md
https://github.com/arramac
https://github.com/mimig1
https://github.com/arramac/documentdb-dotnet-core-getting-started
https://azure.microsoft.com/free/
https://go.microsoft.com/fwlink/?LinkId=691129
https://go.microsoft.com/fwlink/?LinkID=827546
https://www.microsoft.com/net/core#macos
https://www.microsoft.com/net/core#windows
https://code.visualstudio.com/

DocumentDB Emulator to setup the emulator and skip ahead to Setup your Visual Studio Solution.

1. Sign in to the Azure portal.

2. In the Jumpbar, click NewNew , click DatabasesDatabases , and then click NoSQL (DocumentDB)NoSQL (DocumentDB) .

3. In the New accountNew account blade, specify the desired configuration for the DocumentDB account.

In the IDID box, enter a name to identify the DocumentDB account. When the IDID is validated, a green check

https://portal.azure.com/

 Step 2: Setup your Visual Studio solution

mark appears in the IDID box. The IDID value becomes the host name within the URI. The IDID may contain

only lowercase letters, numbers, and the '-' character, and must be between 3 and 50 characters. Note

that documents.azure.com is appended to the endpoint name you choose, the result of which becomes

your DocumentDB account endpoint.

In the NoSQL APINoSQL API box, select DocumentDBDocumentDB.

For Subscr iptionSubscr iption , select the Azure subscription that you want to use for the DocumentDB account. If

your account has only one subscription, that account is selected by default.

In Resource GroupResource Group, select or create a resource group for your DocumentDB account. By default, a new

resource group is created. For more information, see Using the Azure portal to manage your Azure

resources.

Use LocationLocation to specify the geographic location in which to host your DocumentDB account.

4. Once the new DocumentDB account options are configured, click CreateCreate. To check the status of the

deployment, check the Notifications hub.

5. After the DocumentDB account is created, it is ready for use with the default settings. To review the default

settings, click the NoSQL (DocumentDB)NoSQL (DocumentDB) icon on the Jumpbar, click your new account, and then click

Default ConsistencyDefault Consistency in the Resource Menu.

The default consistency of the DocumentDB account is set to SessionSession . You can adjust the default

consistency by clicking Default ConsistencyDefault Consistency in the resource menu. To learn more about the consistency

levels offered by DocumentDB, see Consistency levels in DocumentDB.

1. Open Visual S tudio 2015Visual S tudio 2015 on your computer.

2. On the F ileF ile menu, select NewNew , and then choose ProjectProject.

3. In the New ProjectNew Project dialog, select TemplatesTemplates / Visual C#Visual C# / .NET Core.NET Core/Console Application (.NET Core)Console Application (.NET Core) ,

file:///D:/azure-docs-pr/_site/azure/.tmp/azure-portal/resource-group-portal.html

name your project, and then click OKOK.

4. In the Solution ExplorerSolution Explorer , right click on your new console application, which is under your Visual Studio

solution.

5. Then without leaving the menu, click on Manage NuGet Packages...Manage NuGet Packages...

 Step 3: Connect to a DocumentDB account

using System;

using System.Linq;

using System.Threading.Tasks;

// ADD THIS PART TO YOUR CODE

using System.Net;

using Microsoft.Azure.Documents;

using Microsoft.Azure.Documents.Client;

using Newtonsoft.Json;

6. In the NugetNuget tab, click BrowseBrowse, and type azure documentdbazure documentdb in the search box.

7. Within the results, find Microsoft.Azure.DocumentDB.CoreMicrosoft.Azure.DocumentDB.Core and click InstallInstall . The package ID for the

DocumentDB Client Library is Microsoft.Azure.DocumentDB.Core

Great! Now that we finished the setup, let's start writing some code. You can find a completed code project of this

tutorial at GitHub.

First, add these references to the beginning of your C# application, in the Program.cs file:

https://www.nuget.org/packages/Microsoft.Azure.DocumentDB.Core
https://github.com/arramac/documentdb-dotnet-core-getting-started

IMPORTANT

public class Program

{

 // ADD THIS PART TO YOUR CODE

 private const string EndpointUri = "<your endpoint URI>";

 private const string PrimaryKey = "<your key>";

 private DocumentClient client;

static void Main(string[] args)

{

}

// ADD THIS PART TO YOUR CODE

private async Task GetStartedDemo()

{

 this.client = new DocumentClient(new Uri(EndpointUri), PrimaryKey);

}

In order to complete this NoSQL tutorial, make sure you add the dependencies above.

Now, add these two constants and your client variable underneath your public class Program.

Next, head to the Azure Portal to retrieve your URI and primary key. The DocumentDB URI and primary key are

necessary for your application to understand where to connect to, and for DocumentDB to trust your application's

connection.

In the Azure Portal, navigate to your DocumentDB account, and then click KeysKeys .

Copy the URI from the portal and paste it into <your endpoint URI> in the program.cs file. Then copy the PRIMARY

KEY from the portal and paste it into <your key> . If you are using the Azure DocumentDB Emulator, use

https://localhost:443 as the endpoint, and the well-defined authorization key from How to develop using the

DocumentDB Emulator.

We'll start the getting started application by creating a new instance of the DocumentClientDocumentClient.

Below the MainMain method, add this new asynchronous task called GetS tar tedDemoGetS tar tedDemo, which will instantiate our new

DocumentClientDocumentClient.

https://portal.azure.com

static void Main(string[] args)

{

 // ADD THIS PART TO YOUR CODE

 try

 {

 Program p = new Program();

 p.GetStartedDemo().Wait();

 }

 catch (DocumentClientException de)

 {

 Exception baseException = de.GetBaseException();

 Console.WriteLine("{0} error occurred: {1}, Message: {2}", de.StatusCode, de.Message,

baseException.Message);

 }

 catch (Exception e)

 {

 Exception baseException = e.GetBaseException();

 Console.WriteLine("Error: {0}, Message: {1}", e.Message, baseException.Message);

 }

 finally

 {

 Console.WriteLine("End of demo, press any key to exit.");

 Console.ReadKey();

 }

Step 4: Create a database

// ADD THIS PART TO YOUR CODE

private void WriteToConsoleAndPromptToContinue(string format, params object[] args)

{

 Console.WriteLine(format, args);

 Console.WriteLine("Press any key to continue ...");

 Console.ReadKey();

}

Add the following code to run your asynchronous task from your MainMain method. The MainMain method will catch

exceptions and write them to the console.

Press F5F5 to run your application.

Congratulations! You have successfully connected to a DocumentDB account, let's now take a look at working with

DocumentDB resources.

Before you add the code for creating a database, add a helper method for writing to the console.

Copy and paste the Wr iteToConsoleAndPromptToContinueWriteToConsoleAndPromptToContinue method underneath the GetS tar tedDemoGetS tar tedDemo

method.

Your DocumentDB database can be created by using the CreateDatabaseAsync method of the DocumentClientDocumentClient

class. A database is the logical container of JSON document storage partitioned across collections.

Copy and paste the CreateDatabaseIfNotExistsCreateDatabaseIfNotExists method underneath the

WriteToConsoleAndPromptToContinueWriteToConsoleAndPromptToContinue method.

https://msdn.microsoft.com/library/microsoft.azure.documents.client.documentclient.createdatabaseasync.aspx

// ADD THIS PART TO YOUR CODE

private async Task CreateDatabaseIfNotExists(string databaseName)

{

 // Check to verify a database with the id=FamilyDB does not exist

 try

 {

 await this.client.ReadDatabaseAsync(UriFactory.CreateDatabaseUri(databaseName));

 this.WriteToConsoleAndPromptToContinue("Found {0}", databaseName);

 }

 catch (DocumentClientException de)

 {

 // If the database does not exist, create a new database

 if (de.StatusCode == HttpStatusCode.NotFound)

 {

 await this.client.CreateDatabaseAsync(new Database { Id = databaseName });

 this.WriteToConsoleAndPromptToContinue("Created {0}", databaseName);

 }

 else

 {

 throw;

 }

 }

}

private async Task GetStartedDemo()

{

 this.client = new DocumentClient(new Uri(EndpointUri), PrimaryKey);

 // ADD THIS PART TO YOUR CODE

 await this.CreateDatabaseIfNotExists("FamilyDB_oa");

Step 5: Create a collection

WARNING

Copy and paste the following code to your GetS tar tedDemoGetS tar tedDemo method underneath the client creation. This will

create a database named FamilyDB.

Press F5F5 to run your application.

Congratulations! You have successfully created a DocumentDB database.

CreateDocumentCollectionAsyncCreateDocumentCollectionAsync will create a new collection with reserved throughput, which has pricing implications.

For more details, please visit our pricing page.

A collection can be created by using the CreateDocumentCollectionAsync method of the DocumentClientDocumentClient class. A

collection is a container of JSON documents and associated JavaScript application logic.

Copy and paste the CreateDocumentCollectionIfNotExistsCreateDocumentCollectionIfNotExists method underneath your

CreateDatabaseIfNotExistsCreateDatabaseIfNotExists method.

https://azure.microsoft.com/pricing/details/documentdb/
https://msdn.microsoft.com/library/microsoft.azure.documents.client.documentclient.createdocumentcollectionasync.aspx

// ADD THIS PART TO YOUR CODE

private async Task CreateDocumentCollectionIfNotExists(string databaseName, string collectionName)

{

 try

 {

 await this.client.ReadDocumentCollectionAsync(UriFactory.CreateDocumentCollectionUri(databaseName,

collectionName));

 this.WriteToConsoleAndPromptToContinue("Found {0}", collectionName);

 }

 catch (DocumentClientException de)

 {

 // If the document collection does not exist, create a new collection

 if (de.StatusCode == HttpStatusCode.NotFound)

 {

 DocumentCollection collectionInfo = new DocumentCollection();

 collectionInfo.Id = collectionName;

 // Configure collections for maximum query flexibility including string range queries.

 collectionInfo.IndexingPolicy = new IndexingPolicy(new RangeIndex(DataType.String) { Precision = -1

});

 // Here we create a collection with 400 RU/s.

 await this.client.CreateDocumentCollectionAsync(

 UriFactory.CreateDatabaseUri(databaseName),

 collectionInfo,

 new RequestOptions { OfferThroughput = 400 });

 this.WriteToConsoleAndPromptToContinue("Created {0}", collectionName);

 }

 else

 {

 throw;

 }

 }

}

 this.client = new DocumentClient(new Uri(EndpointUri), PrimaryKey);

 await this.CreateDatabaseIfNotExists("FamilyDB_oa");

 // ADD THIS PART TO YOUR CODE

 await this.CreateDocumentCollectionIfNotExists("FamilyDB_oa", "FamilyCollection_oa");

Step 6: Create JSON documents

Copy and paste the following code to your GetS tar tedDemoGetS tar tedDemo method underneath the database creation. This will

create a document collection named FamilyCollection_oa.

Press F5F5 to run your application.

Congratulations! You have successfully created a DocumentDB document collection.

A document can be created by using the CreateDocumentAsync method of the DocumentClientDocumentClient class.

Documents are user defined (arbitrary) JSON content. We can now insert one or more documents. If you already

have data you'd like to store in your database, you can use DocumentDB's Data Migration tool.

First, we need to create a FamilyFamily class that will represent objects stored within DocumentDB in this sample. We

will also create ParentParent, ChildChild , PetPet, AddressAddress subclasses that are used within FamilyFamily . Note that documents must

have an IdId property serialized as idid in JSON. Create these classes by adding the following internal sub-classes

after the GetS tar tedDemoGetS tar tedDemo method.

Copy and paste the FamilyFamily , ParentParent, ChildChild , PetPet, and AddressAddress classes underneath the

https://msdn.microsoft.com/library/microsoft.azure.documents.client.documentclient.createdocumentasync.aspx

private void WriteToConsoleAndPromptToContinue(string format, params object[] args)

{

 Console.WriteLine(format, args);

 Console.WriteLine("Press any key to continue ...");

 Console.ReadKey();

}

// ADD THIS PART TO YOUR CODE

public class Family

{

 [JsonProperty(PropertyName = "id")]

 public string Id { get; set; }

 public string LastName { get; set; }

 public Parent[] Parents { get; set; }

 public Child[] Children { get; set; }

 public Address Address { get; set; }

 public bool IsRegistered { get; set; }

 public override string ToString()

 {

 return JsonConvert.SerializeObject(this);

 }

}

public class Parent

{

 public string FamilyName { get; set; }

 public string FirstName { get; set; }

}

public class Child

{

 public string FamilyName { get; set; }

 public string FirstName { get; set; }

 public string Gender { get; set; }

 public int Grade { get; set; }

 public Pet[] Pets { get; set; }

}

public class Pet

{

 public string GivenName { get; set; }

}

public class Address

{

 public string State { get; set; }

 public string County { get; set; }

 public string City { get; set; }

}

WriteToConsoleAndPromptToContinueWriteToConsoleAndPromptToContinue method.

Copy and paste the CreateFamilyDocumentIfNotExistsCreateFamilyDocumentIfNotExists method underneath your

CreateDocumentCollectionIfNotExistsCreateDocumentCollectionIfNotExists method.

// ADD THIS PART TO YOUR CODE

private async Task CreateFamilyDocumentIfNotExists(string databaseName, string collectionName, Family family)

{

 try

 {

 await this.client.ReadDocumentAsync(UriFactory.CreateDocumentUri(databaseName, collectionName,

family.Id));

 this.WriteToConsoleAndPromptToContinue("Found {0}", family.Id);

 }

 catch (DocumentClientException de)

 {

 if (de.StatusCode == HttpStatusCode.NotFound)

 {

 await this.client.CreateDocumentAsync(UriFactory.CreateDocumentCollectionUri(databaseName,

collectionName), family);

 this.WriteToConsoleAndPromptToContinue("Created Family {0}", family.Id);

 }

 else

 {

 throw;

 }

 }

}

await this.CreateDatabaseIfNotExists("FamilyDB_oa");

await this.CreateDocumentCollectionIfNotExists("FamilyDB_oa", "FamilyCollection_oa");

// ADD THIS PART TO YOUR CODE

Family andersenFamily = new Family

{

 Id = "Andersen.1",

 LastName = "Andersen",

 Parents = new Parent[]

 {

 new Parent { FirstName = "Thomas" },

 new Parent { FirstName = "Mary Kay" }

 },

 Children = new Child[]

 {

 new Child

 {

 FirstName = "Henriette Thaulow",

 Gender = "female",

 Grade = 5,

 Pets = new Pet[]

 {

 new Pet { GivenName = "Fluffy" }

 }

 }

 },

 Address = new Address { State = "WA", County = "King", City = "Seattle" },

 IsRegistered = true

};

await this.CreateFamilyDocumentIfNotExists("FamilyDB_oa", "FamilyCollection_oa", andersenFamily);

Family wakefieldFamily = new Family

{

 Id = "Wakefield.7",

 LastName = "Wakefield",

 Parents = new Parent[]

And insert two documents, one each for the Andersen Family and the Wakefield Family.

Copy and paste the following code to your GetS tar tedDemoGetS tar tedDemo method underneath the document collection

creation.

 Parents = new Parent[]

 {

 new Parent { FamilyName = "Wakefield", FirstName = "Robin" },

 new Parent { FamilyName = "Miller", FirstName = "Ben" }

 },

 Children = new Child[]

 {

 new Child

 {

 FamilyName = "Merriam",

 FirstName = "Jesse",

 Gender = "female",

 Grade = 8,

 Pets = new Pet[]

 {

 new Pet { GivenName = "Goofy" },

 new Pet { GivenName = "Shadow" }

 }

 },

 new Child

 {

 FamilyName = "Miller",

 FirstName = "Lisa",

 Gender = "female",

 Grade = 1

 }

 },

 Address = new Address { State = "NY", County = "Manhattan", City = "NY" },

 IsRegistered = false

};

await this.CreateFamilyDocumentIfNotExists("FamilyDB_oa", "FamilyCollection_oa", wakefieldFamily);

Step 7: Query DocumentDB resources

Press F5F5 to run your application.

Congratulations! You have successfully created two DocumentDB documents.

DocumentDB supports rich queries against JSON documents stored in each collection. The following sample code

shows various queries - using both DocumentDB SQL syntax as well as LINQ - that we can run against the

documents we inserted in the previous step.

Copy and paste the ExecuteS impleQueryExecuteS impleQuery method underneath your CreateFamilyDocumentIfNotExistsCreateFamilyDocumentIfNotExists

method.

// ADD THIS PART TO YOUR CODE

private void ExecuteSimpleQuery(string databaseName, string collectionName)

{

 // Set some common query options

 FeedOptions queryOptions = new FeedOptions { MaxItemCount = -1 };

 // Here we find the Andersen family via its LastName

 IQueryable<Family> familyQuery = this.client.CreateDocumentQuery<Family>(

 UriFactory.CreateDocumentCollectionUri(databaseName, collectionName), queryOptions)

 .Where(f => f.LastName == "Andersen");

 // The query is executed synchronously here, but can also be executed asynchronously via the

IDocumentQuery<T> interface

 Console.WriteLine("Running LINQ query...");

 foreach (Family family in familyQuery)

 {

 Console.WriteLine("\tRead {0}", family);

 }

 // Now execute the same query via direct SQL

 IQueryable<Family> familyQueryInSql = this.client.CreateDocumentQuery<Family>(

 UriFactory.CreateDocumentCollectionUri(databaseName, collectionName),

 "SELECT * FROM Family WHERE Family.LastName = 'Andersen'",

 queryOptions);

 Console.WriteLine("Running direct SQL query...");

 foreach (Family family in familyQueryInSql)

 {

 Console.WriteLine("\tRead {0}", family);

 }

 Console.WriteLine("Press any key to continue ...");

 Console.ReadKey();

}

await this.CreateFamilyDocumentIfNotExists("FamilyDB_oa", "FamilyCollection_oa", wakefieldFamily);

// ADD THIS PART TO YOUR CODE

this.ExecuteSimpleQuery("FamilyDB_oa", "FamilyCollection_oa");

Copy and paste the following code to your GetS tar tedDemoGetS tar tedDemo method underneath the second document creation.

Press F5F5 to run your application.

Congratulations! You have successfully queried against a DocumentDB collection.

The following diagram illustrates how the DocumentDB SQL query syntax is called against the collection you

created, and the same logic applies to the LINQ query as well.

The FROM keyword is optional in the query because DocumentDB queries are already scoped to a single

Step 8: Replace JSON document

// ADD THIS PART TO YOUR CODE

private async Task ReplaceFamilyDocument(string databaseName, string collectionName, string familyName, Family

updatedFamily)

{

 try

 {

 await this.client.ReplaceDocumentAsync(UriFactory.CreateDocumentUri(databaseName, collectionName,

familyName), updatedFamily);

 this.WriteToConsoleAndPromptToContinue("Replaced Family {0}", familyName);

 }

 catch (DocumentClientException de)

 {

 throw;

 }

}

await this.CreateFamilyDocumentIfNotExists("FamilyDB_oa", "FamilyCollection_oa", wakefieldFamily);

this.ExecuteSimpleQuery("FamilyDB_oa", "FamilyCollection_oa");

// ADD THIS PART TO YOUR CODE

// Update the Grade of the Andersen Family child

andersenFamily.Children[0].Grade = 6;

await this.ReplaceFamilyDocument("FamilyDB_oa", "FamilyCollection_oa", "Andersen.1", andersenFamily);

this.ExecuteSimpleQuery("FamilyDB_oa", "FamilyCollection_oa");

Step 9: Delete JSON document

collection. Therefore, "FROM Families f" can be swapped with "FROM root r", or any other variable name you

choose. DocumentDB will infer that Families, root, or the variable name you chose, reference the current collection

by default.

DocumentDB supports replacing JSON documents.

Copy and paste the ReplaceFamilyDocumentReplaceFamilyDocument method underneath your ExecuteS impleQueryExecuteS impleQuery method.

Copy and paste the following code to your GetS tar tedDemoGetS tar tedDemo method underneath the query execution. After

replacing the document, this will run the same query again to view the changed document.

Press F5F5 to run your application.

Congratulations! You have successfully replaced a DocumentDB document.

DocumentDB supports deleting JSON documents.

Copy and paste the DeleteFamilyDocumentDeleteFamilyDocument method underneath your ReplaceFamilyDocumentReplaceFamilyDocument method.

// ADD THIS PART TO YOUR CODE

private async Task DeleteFamilyDocument(string databaseName, string collectionName, string documentName)

{

 try

 {

 await this.client.DeleteDocumentAsync(UriFactory.CreateDocumentUri(databaseName, collectionName,

documentName));

 Console.WriteLine("Deleted Family {0}", documentName);

 }

 catch (DocumentClientException de)

 {

 throw;

 }

}

await this.ReplaceFamilyDocument("FamilyDB_oa", "FamilyCollection_oa", "Andersen.1", andersenFamily);

this.ExecuteSimpleQuery("FamilyDB_oa", "FamilyCollection_oa");

// ADD THIS PART TO CODE

await this.DeleteFamilyDocument("FamilyDB_oa", "FamilyCollection_oa", "Andersen.1");

Step 10: Delete the database

this.ExecuteSimpleQuery("FamilyDB_oa", "FamilyCollection_oa");

await this.DeleteFamilyDocument("FamilyDB_oa", "FamilyCollection_oa", "Andersen.1");

// ADD THIS PART TO CODE

// Clean up/delete the database

await this.client.DeleteDatabaseAsync(UriFactory.CreateDatabaseUri("FamilyDB_oa"));

Step 11: Run your C# console application all together!

Copy and paste the following code to your GetS tar tedDemoGetS tar tedDemo method underneath the second query execution.

Press F5F5 to run your application.

Congratulations! You have successfully deleted a DocumentDB document.

Deleting the created database will remove the database and all children resources (collections, documents, etc.).

Copy and paste the following code to your GetS tar tedDemoGetS tar tedDemo method underneath the document delete to delete

the entire database and all children resources.

Press F5F5 to run your application.

Congratulations! You have successfully deleted a DocumentDB database.

Hit F5 in Visual Studio to build the application in debug mode.

You should see the output of your get started app. The output will show the results of the queries we added and

should match the example text below.

Created FamilyDB_oa

Press any key to continue ...

Created FamilyCollection_oa

Press any key to continue ...

Created Family Andersen.1

Press any key to continue ...

Created Family Wakefield.7

Press any key to continue ...

Running LINQ query...

 Read {"id":"Andersen.1","LastName":"Andersen","District":"WA5","Parents":

[{"FamilyName":null,"FirstName":"Thomas"},{"FamilyName":null,"FirstName":"Mary Kay"}],"Children":

[{"FamilyName":null,"FirstName":"Henriette Thaulow","Gender":"female","Grade":5,"Pets":

[{"GivenName":"Fluffy"}]}],"Address":{"State":"WA","County":"King","City":"Seattle"},"IsRegistered":true}

Running direct SQL query...

 Read {"id":"Andersen.1","LastName":"Andersen","District":"WA5","Parents":

[{"FamilyName":null,"FirstName":"Thomas"},{"FamilyName":null,"FirstName":"Mary Kay"}],"Children":

[{"FamilyName":null,"FirstName":"Henriette Thaulow","Gender":"female","Grade":5,"Pets":

[{"GivenName":"Fluffy"}]}],"Address":{"State":"WA","County":"King","City":"Seattle"},"IsRegistered":true}

Replaced Family Andersen.1

Press any key to continue ...

Running LINQ query...

 Read {"id":"Andersen.1","LastName":"Andersen","District":"WA5","Parents":

[{"FamilyName":null,"FirstName":"Thomas"},{"FamilyName":null,"FirstName":"Mary Kay"}],"Children":

[{"FamilyName":null,"FirstName":"Henriette Thaulow","Gender":"female","Grade":6,"Pets":

[{"GivenName":"Fluffy"}]}],"Address":{"State":"WA","County":"King","City":"Seattle"},"IsRegistered":true}

Running direct SQL query...

 Read {"id":"Andersen.1","LastName":"Andersen","District":"WA5","Parents":

[{"FamilyName":null,"FirstName":"Thomas"},{"FamilyName":null,"FirstName":"Mary Kay"}],"Children":

[{"FamilyName":null,"FirstName":"Henriette Thaulow","Gender":"female","Grade":6,"Pets":

[{"GivenName":"Fluffy"}]}],"Address":{"State":"WA","County":"King","City":"Seattle"},"IsRegistered":true}

Deleted Family Andersen.1

End of demo, press any key to exit.

Get the complete NoSQL tutorial solution

Next steps

Congratulations! You've completed this NoSQL tutorial and have a working C# console application!

To build the GetStarted solution that contains all the samples in this article, you will need the following:

An active Azure account. If you don't have one, you can sign up for a free account.

A DocumentDB account.

The GetStarted solution available on GitHub.

To restore the references to the DocumentDB .NET Core SDK in Visual Studio, right-click the GetS tar tedGetS tar ted solution

in Solution Explorer, and then click Enable NuGet Package RestoreEnable NuGet Package Restore. Next, in the Program.cs file, update the

EndpointUrl and AuthorizationKey values as described in Connect to a DocumentDB account.

Want a more complex ASP.NET MVC NoSQL tutorial? See Build a web application with ASP.NET MVC using

DocumentDB.

Want to perform scale and performance testing with DocumentDB? See Performance and Scale Testing with

Azure DocumentDB

Learn how to monitor a DocumentDB account.

Run queries against our sample dataset in the Query Playground.

Learn more about the programming model in the Develop section of the DocumentDB documentation page.

https://azure.microsoft.com/free/
https://github.com/arramac/documentdb-dotnet-core-getting-started
https://www.documentdb.com/sql/demo
https://azure.microsoft.com/documentation/services/documentdb/

Andrew Hoh • mimig • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • arramac • Guy Burstein • v-aljenk

NoSQL Node.js tutorial: DocumentDB Node.js
console application
11/22/2016 • 13 min to read • Edit on GitHub

Contributors

Prerequisites for the Node.js tutorial

Step 1: Create a DocumentDB account

Welcome to the Node.js tutorial for the Azure DocumentDB Node.js SDK! After following this tutorial, you'll have a

console application that creates and queries DocumentDB resources, including a Node database.

We'll cover:

Creating and connecting to a DocumentDB account

Setting up your application

Creating a node database

Creating a collection

Creating JSON documents

Querying the collection

Replacing a document

Deleting a document

Deleting the node database

Don't have time? Don't worry! The complete solution is available on GitHub. See Get the complete solution for

quick instructions.

After you've completed the Node.js tutorial, please use the voting buttons at the top and bottom of this page to

give us feedback. If you'd like us to contact you directly, feel free to include your email address in your comments.

Now let's get started!

Please make sure you have the following:

An active Azure account. If you don't have one, you can sign up for a Free Azure Trial.

Node.js version v0.10.29 or higher.

Alternatively, you can use the Azure DocumentDB Emulator for this tutorial.

Let's create a DocumentDB account. If you already have an account you want to use, you can skip ahead to Setup

your Node.js application. If you are using the DocumentDB Emulator, please follow the steps at Azure

DocumentDB Emulator to setup the emulator and skip ahead to Setup your Node.js application.

1. Sign in to the Azure portal.

2. In the Jumpbar, click NewNew , click DatabasesDatabases , and then click NoSQL (DocumentDB)NoSQL (DocumentDB) .

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-nodejs-get-started.md
https://github.com/AndrewHoh
https://github.com/mimig1
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/arramac
https://github.com/bursteg
https://github.com/v-aljenk
https://github.com/Azure-Samples/documentdb-node-getting-started
https://azure.microsoft.com/pricing/free-trial/
https://nodejs.org/
https://portal.azure.com/

3. In the New accountNew account blade, specify the desired configuration for the DocumentDB account.

In the IDID box, enter a name to identify the DocumentDB account. When the IDID is validated, a green check

mark appears in the IDID box. The IDID value becomes the host name within the URI. The IDID may contain

only lowercase letters, numbers, and the '-' character, and must be between 3 and 50 characters. Note

that documents.azure.com is appended to the endpoint name you choose, the result of which becomes

your DocumentDB account endpoint.

 Step 2: Setup your Node.js application

In the NoSQL APINoSQL API box, select DocumentDBDocumentDB.

For Subscr iptionSubscr iption , select the Azure subscription that you want to use for the DocumentDB account. If

your account has only one subscription, that account is selected by default.

In Resource GroupResource Group, select or create a resource group for your DocumentDB account. By default, a new

resource group is created. For more information, see Using the Azure portal to manage your Azure

resources.

Use LocationLocation to specify the geographic location in which to host your DocumentDB account.

4. Once the new DocumentDB account options are configured, click CreateCreate. To check the status of the

deployment, check the Notifications hub.

5. After the DocumentDB account is created, it is ready for use with the default settings. To review the default

settings, click the NoSQL (DocumentDB)NoSQL (DocumentDB) icon on the Jumpbar, click your new account, and then click

Default ConsistencyDefault Consistency in the Resource Menu.

The default consistency of the DocumentDB account is set to SessionSession . You can adjust the default

consistency by clicking Default ConsistencyDefault Consistency in the resource menu. To learn more about the consistency

levels offered by DocumentDB, see Consistency levels in DocumentDB.

1. Open your favorite terminal.

2. Locate the folder or directory where you'd like to save your Node.js application.

3. Create two empty JavaScript files with the following commands:

Windows:

Linux/OS X:

fsutil file createnew app.js 0

fsutil file createnew config.js 0

file:///D:/azure-docs-pr/_site/azure/.tmp/azure-portal/resource-group-portal.html

 Step 3: Set your app's configurations

// ADD THIS PART TO YOUR CODE

var config = {}

config.endpoint = "~your DocumentDB endpoint uri here~";

config.primaryKey = "~your primary key here~";

config.endpoint = "~your DocumentDB endpoint uri here~";

config.primaryKey = "~your primary key here~";

4. Install the documentdb module via npm. Use the following command:

touch app.js

touch config.js

npm install documentdb --save

Great! Now that you've finished setting up, let's start writing some code.

Open config.js in your favorite text editor.

Then, copy and paste the code snippet below and set properties config.endpoint and config.primaryKey to your

DocumentDB endpoint uri and primary key. Both these configurations can be found in the Azure Portal.

Copy and paste the database id , collection id , and JSON documents to your config object below where you set

your config.endpoint and config.authKey properties. If you already have data you'd like to store in your

database, you can use DocumentDB's Data Migration tool rather than adding the document definitions.

https://portal.azure.com

// ADD THIS PART TO YOUR CODE

config.database = {

 "id": "FamilyDB"

};

config.collection = {

 "id": "FamilyColl"

};

config.documents = {

 "Andersen": {

 "id": "Anderson.1",

 "lastName": "Andersen",

 "parents": [{

 "firstName": "Thomas"

 }, {

 "firstName": "Mary Kay"

 }],

 "children": [{

 "firstName": "Henriette Thaulow",

 "gender": "female",

 "grade": 5,

 "pets": [{

 "givenName": "Fluffy"

 }]

 }],

 "address": {

 "state": "WA",

 "county": "King",

 "city": "Seattle"

 }

 },

 "Wakefield": {

 "id": "Wakefield.7",

 "parents": [{

 "familyName": "Wakefield",

 "firstName": "Robin"

 }, {

 "familyName": "Miller",

 "firstName": "Ben"

 }],

 "children": [{

 "familyName": "Merriam",

 "firstName": "Jesse",

 "gender": "female",

 "grade": 8,

 "pets": [{

 "givenName": "Goofy"

 }, {

 "givenName": "Shadow"

 }]

 }, {

 "familyName": "Miller",

 "firstName": "Lisa",

 "gender": "female",

 "grade": 1

 }],

 "address": {

 "state": "NY",

 "county": "Manhattan",

 "city": "NY"

 },

 "isRegistered": false

 }

};

The database, collection, and document definitions will act as your DocumentDB database id , collection id , and

 },

 "isRegistered": false

 }

};

// ADD THIS PART TO YOUR CODE

module.exports = config;

Step 4: Connect to a DocumentDB account

// ADD THIS PART TO YOUR CODE

"use strict";

var documentClient = require("documentdb").DocumentClient;

var config = require("./config");

var url = require('url');

var config = require("./config");

var url = require('url');

// ADD THIS PART TO YOUR CODE

var client = new documentClient(config.endpoint, { "masterKey": config.primaryKey });

Step 5: Create a Node database

var client = new documentClient(config.endpoint, { "masterKey": config.primaryKey });

// ADD THIS PART TO YOUR CODE

var HttpStatusCodes = { NOTFOUND: 404 };

var databaseUrl = `dbs/${config.database.id}`;

var collectionUrl = `${databaseUrl}/colls/${config.collection.id}`;

documents' data.

Finally, export your config object, so that you can reference it within the app.js file.

Open your empty app.js file in the text editor. Copy and paste the code below to import the documentdb module

and your newly created config module.

Copy and paste the code to use the previously saved config.endpoint and config.primaryKey to create a new

DocumentClient.

Now that you have the code to initialize the documentdb client, let's take a look at working with DocumentDB

resources.

Copy and paste the code below to set the HTTP status for Not Found, the database url, and the collection url. These

urls are how the DocumentDB client will find the right database and collection.

A database can be created by using the createDatabase function of the DocumentClientDocumentClient class. A database is the

logical container of document storage partitioned across collections.

Copy and paste the getDatabasegetDatabase function for creating your new database in the app.js file with the id specified

in the config object. The function will check if the database with the same FamilyRegistry id does not already

exist. If it does exist, we'll return that database instead of creating a new one.

https://azure.github.io/azure-documentdb-node/DocumentClient.html

var collectionUrl = `${databaseUrl}/colls/${config.collection.id}`;

// ADD THIS PART TO YOUR CODE

function getDatabase() {

 console.log(`Getting database:\n${config.database.id}\n`);

 return new Promise((resolve, reject) => {

 client.readDatabase(databaseUrl, (err, result) => {

 if (err) {

 if (err.code == HttpStatusCodes.NOTFOUND) {

 client.createDatabase(config.database, (err, created) => {

 if (err) reject(err)

 else resolve(created);

 });

 } else {

 reject(err);

 }

 } else {

 resolve(result);

 }

 });

 });

}

 } else {

 resolve(result);

 }

 });

 });

}

// ADD THIS PART TO YOUR CODE

function exit(message) {

 console.log(message);

 console.log('Press any key to exit');

 process.stdin.setRawMode(true);

 process.stdin.resume();

 process.stdin.on('data', process.exit.bind(process, 0));

}

getDatabase()

.then(() => { exit(`Completed successfully`); })

.catch((error) => { exit(`Completed with error ${JSON.stringify(error)}`) });

Step 6: Create a collection

WARNING

Copy and paste the code below where you set the getDatabasegetDatabase function to add the helper function exitexit that will

print the exit message and the call to getDatabasegetDatabase function.

In your terminal, locate your app.js file and run the command: node app.js

Congratulations! You have successfully created a DocumentDB database.

CreateDocumentCollectionAsyncCreateDocumentCollectionAsync will create a new collection, which has pricing implications. For more details, please visit

our pricing page.

A collection can be created by using the createCollection function of the DocumentClientDocumentClient class. A collection is a

container of JSON documents and associated JavaScript application logic.

Copy and paste the getCollectiongetCollection function underneath the getDatabasegetDatabase function for creating your new

https://azure.microsoft.com/pricing/details/documentdb/
https://azure.github.io/azure-documentdb-node/DocumentClient.html

 } else {

 resolve(result);

 }

 });

 });

}

// ADD THIS PART TO YOUR CODE

function getCollection() {

 console.log(`Getting collection:\n${config.collection.id}\n`);

 return new Promise((resolve, reject) => {

 client.readCollection(collectionUrl, (err, result) => {

 if (err) {

 if (err.code == HttpStatusCodes.NOTFOUND) {

 client.createCollection(databaseUrl, config.collection, { offerThroughput: 400 }, (err,

created) => {

 if (err) reject(err)

 else resolve(created);

 });

 } else {

 reject(err);

 }

 } else {

 resolve(result);

 }

 });

 });

}

getDatabase()

// ADD THIS PART TO YOUR CODE

.then(() => getCollection())

// ENDS HERE

.then(() => { exit(`Completed successfully`); })

.catch((error) => { exit(`Completed with error ${JSON.stringify(error)}`) });

Step 7: Create a document

collection with the id specified in the config object. Again, we'll check to make sure a collection with the same

FamilyCollection id does not already exist. If it does exist, we'll return that collection instead of creating a new

one.

Copy and paste the code below the call to getDatabasegetDatabase to execute the getCollectiongetCollection function.

In your terminal, locate your app.js file and run the command: node app.js

Congratulations! You have successfully created a DocumentDB collection.

A document can be created by using the createDocument function of the DocumentClientDocumentClient class. Documents are

user defined (arbitrary) JSON content. You can now insert a document into DocumentDB.

Copy and paste the getFamilyDocumentgetFamilyDocument function underneath the getCollectiongetCollection function for creating the

documents containing the JSON data saved in the config object. Again, we'll check to make sure a document with

the same id does not already exist.

https://azure.github.io/azure-documentdb-node/DocumentClient.html

 } else {

 resolve(result);

 }

 });

 });

}

// ADD THIS PART TO YOUR CODE

function getFamilyDocument(document) {

 let documentUrl = `${collectionUrl}/docs/${document.id}`;

 console.log(`Getting document:\n${document.id}\n`);

 return new Promise((resolve, reject) => {

 client.readDocument(documentUrl, { partitionKey: document.district }, (err, result) => {

 if (err) {

 if (err.code == HttpStatusCodes.NOTFOUND) {

 client.createDocument(collectionUrl, document, (err, created) => {

 if (err) reject(err)

 else resolve(created);

 });

 } else {

 reject(err);

 }

 } else {

 resolve(result);

 }

 });

 });

};

getDatabase()

.then(() => getCollection())

// ADD THIS PART TO YOUR CODE

.then(() => getFamilyDocument(config.documents.Andersen))

.then(() => getFamilyDocument(config.documents.Wakefield))

// ENDS HERE

.then(() => { exit(`Completed successfully`); })

.catch((error) => { exit(`Completed with error ${JSON.stringify(error)}`) });

Step 8: Query DocumentDB resources

Copy and paste the code below the call to getCollectiongetCollection to execute the getFamilyDocumentgetFamilyDocument function.

In your terminal, locate your app.js file and run the command: node app.js

Congratulations! You have successfully created a DocumentDB documents.

DocumentDB supports rich queries against JSON documents stored in each collection. The following sample code

 } else {

 resolve(result);

 }

 });

 });

}

// ADD THIS PART TO YOUR CODE

function queryCollection() {

 console.log(`Querying collection through index:\n${config.collection.id}`);

 return new Promise((resolve, reject) => {

 client.queryDocuments(

 collectionUrl,

 'SELECT VALUE r.children FROM root r WHERE r.lastName = "Andersen"'

).toArray((err, results) => {

 if (err) reject(err)

 else {

 for (var queryResult of results) {

 let resultString = JSON.stringify(queryResult);

 console.log(`\tQuery returned ${resultString}`);

 }

 console.log();

 resolve(results);

 }

 });

 });

};

shows a query that you can run against the documents in your collection.

Copy and paste the queryCollectionqueryCollection function underneath the getFamilyDocumentgetFamilyDocument function. DocumentDB

supports SQL-like queries as shown below. For more information on building complex queries, check out the

Query Playground and the query documentation.

The following diagram illustrates how the DocumentDB SQL query syntax is called against the collection you

created.

The FROM keyword is optional in the query because DocumentDB queries are already scoped to a single

collection. Therefore, "FROM Families f" can be swapped with "FROM root r", or any other variable name you

choose. DocumentDB will infer that Families, root, or the variable name you chose, reference the current collection

by default.

Copy and paste the code below the call to getFamilyDocumentgetFamilyDocument to execute the queryCollectionqueryCollection function.

https://www.documentdb.com/sql/demo

.then(() => getFamilyDocument(config.documents.Andersen))

.then(() => getFamilyDocument(config.documents.Wakefield))

// ADD THIS PART TO YOUR CODE

.then(() => queryCollection())

// ENDS HERE

.then(() => { exit(`Completed successfully`); })

.catch((error) => { exit(`Completed with error ${JSON.stringify(error)}`) });

Step 9: Replace a document

 }

 console.log();

 resolve(result);

 }

 });

 });

}

// ADD THIS PART TO YOUR CODE

function replaceFamilyDocument(document) {

 let documentUrl = `${collectionUrl}/docs/${document.id}`;

 console.log(`Replacing document:\n${document.id}\n`);

 document.children[0].grade = 6;

 return new Promise((resolve, reject) => {

 client.replaceDocument(documentUrl, document, (err, result) => {

 if (err) reject(err);

 else {

 resolve(result);

 }

 });

 });

};

.then(() => getFamilyDocument(config.documents.Andersen))

.then(() => getFamilyDocument(config.documents.Wakefield))

.then(() => queryCollection())

// ADD THIS PART TO YOUR CODE

.then(() => replaceFamilyDocument(config.documents.Andersen))

.then(() => queryCollection())

// ENDS HERE

.then(() => { exit(`Completed successfully`); })

.catch((error) => { exit(`Completed with error ${JSON.stringify(error)}`) });

In your terminal, locate your app.js file and run the command: node app.js

Congratulations! You have successfully queried DocumentDB documents.

DocumentDB supports replacing JSON documents.

Copy and paste the replaceDocumentreplaceDocument function underneath the queryCollectionqueryCollection function.

Copy and paste the code below the call to queryCollectionqueryCollection to execute the replaceDocumentreplaceDocument function. Also, add

the code to call queryCollectionqueryCollection again to verify that the document had successfully changed.

In your terminal, locate your app.js file and run the command: node app.js

Congratulations! You have successfully replaced a DocumentDB document.

Step 10: Delete a document

 else {

 resolve(result);

 }

 });

 });

};

// ADD THIS PART TO YOUR CODE

function deleteFamilyDocument(document) {

 let documentUrl = `${collectionUrl}/docs/${document.id}`;

 console.log(`Deleting document:\n${document.id}\n`);

 return new Promise((resolve, reject) => {

 client.deleteDocument(documentUrl, (err, result) => {

 if (err) reject(err);

 else {

 resolve(result);

 }

 });

 });

};

.then(() => queryCollection())

.then(() => replaceFamilyDocument(config.documents.Andersen))

.then(() => queryCollection())

// ADD THIS PART TO YOUR CODE

.then(() => deleteFamilyDocument(config.documents.Andersen))

// ENDS HERE

.then(() => { exit(`Completed successfully`); })

.catch((error) => { exit(`Completed with error ${JSON.stringify(error)}`) });

Step 11: Delete the Node database

DocumentDB supports deleting JSON documents.

Copy and paste the deleteDocumentdeleteDocument function underneath the replaceDocumentreplaceDocument function.

Copy and paste the code below the call to the second queryCollectionqueryCollection to execute the deleteDocumentdeleteDocument function.

In your terminal, locate your app.js file and run the command: node app.js

Congratulations! You have successfully deleted a DocumentDB document.

Deleting the created database will remove the database and all children resources (collections, documents, etc.).

Copy and paste the following code snippet (function cleanupcleanup) to remove the database and all the children

resources.

 else {

 resolve(result);

 }

 });

 });

};

// ADD THIS PART TO YOUR CODE

function cleanup() {

 console.log(`Cleaning up by deleting database ${config.database.id}`);

 return new Promise((resolve, reject) => {

 client.deleteDatabase(databaseUrl, (err) => {

 if (err) reject(err)

 else resolve(null);

 });

 });

}

.then(() => deleteFamilyDocument(config.documents.Andersen))

// ADD THIS PART TO YOUR CODE

.then(() => cleanup())

// ENDS HERE

.then(() => { exit(`Completed successfully`); })

.catch((error) => { exit(`Completed with error ${JSON.stringify(error)}`) });

Step 12: Run your Node.js application all together!

getDatabase()

.then(() => getCollection())

.then(() => getFamilyDocument(config.documents.Andersen))

.then(() => getFamilyDocument(config.documents.Wakefield))

.then(() => queryCollection())

.then(() => replaceFamilyDocument(config.documents.Andersen))

.then(() => queryCollection())

.then(() => deleteFamilyDocument(config.documents.Andersen))

.then(() => cleanup())

.then(() => { exit(`Completed successfully`); })

.catch((error) => { exit(`Completed with error ${JSON.stringify(error)}`) });

Copy and paste the code below the call to deleteDocumentdeleteDocument to execute the cleanupcleanup function.

Altogether, the sequence for calling your functions should look like this:

In your terminal, locate your app.js file and run the command: node app.js

You should see the output of your get started app. The output should match the example text below.

Getting database:

FamilyDB

Getting collection:

FamilyColl

Getting document:

Anderson.1

Getting document:

Wakefield.7

Querying collection through index:

FamilyColl

 Query returned [{"firstName":"Henriette Thaulow","gender":"female","grade":5,"pets":

[{"givenName":"Fluffy"}]}]

Replacing document:

Anderson.1

Querying collection through index:

FamilyColl

 Query returned [{"firstName":"Henriette Thaulow","gender":"female","grade":6,"pets":

[{"givenName":"Fluffy"}]}]

Deleting document:

Anderson.1

Cleaning up by deleting database FamilyDB

Completed successfully

Press any key to exit

Get the complete Node.js tutorial solution

Next steps

Congratulations! You've created you've completed the Node.js tutorial and have your first DocumentDB console

application!

To build the GetStarted solution that contains all the samples in this article, you will need the following:

DocumentDB account.

The GetStarted solution available on GitHub.

Install the documentdbdocumentdb module via npm. Use the following command:

npm install documentdb --save

Next, in the config.js file, update the config.endpoint and config.authKey values as described in Step 3: Set your

app's configurations.

Want a more complex Node.js sample? See Build a Node.js web application using DocumentDB.

Learn how to monitor a DocumentDB account.

Run queries against our sample dataset in the Query Playground.

Learn more about the programming model in the Develop section of the DocumentDB documentation page.

https://github.com/Azure-Samples/documentdb-node-getting-started
https://www.documentdb.com/sql/demo
https://azure.microsoft.com/documentation/services/documentdb/

Ankit Asthana • mimig • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil

NoSQL C++ tutorial: DocumentDB C++ console
application
11/22/2016 • 8 min to read • Edit on GitHub

Contributors

Prerequisites for the C++ tutorial

Step 1: Create a DocumentDB account

Welcome to the C++ tutorial for the Azure DocumentDB endorsed SDK for C++! After following this tutorial, you'll

have a console application that creates and queries DocumentDB resources, including a C++ database.

We'll cover:

Creating and connecting to a DocumentDB account

Setting up your application

Creating a C++ DocumentDB database

Creating a collection

Creating JSON documents

Querying the collection

Replacing a document

Deleting a document

Deleting the C++ DocumentDB database

Don't have time? Don't worry! The complete solution is available on GitHub. See Get the complete solution for

quick instructions.

After you've completed the C++ tutorial, please use the voting buttons at the bottom of this page to give us

feedback.

If you'd like us to contact you directly, feel free to include your email address in your comments or reach out to us

here.

Now let's get started!

Please make sure you have the following:

An active Azure account. If you don't have one, you can sign up for a Free Azure Trial.

Visual Studio, with the C++ language components installed.

Let's create a DocumentDB account. If you already have an account you want to use, you can skip ahead to Setup

your C++ application.

1. Sign in to the Azure portal.

2. In the Jumpbar, click NewNew , click DatabasesDatabases , and then click NoSQL (DocumentDB)NoSQL (DocumentDB) .

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-cpp-get-started.md
https://github.com/asthana86
https://github.com/mimig1
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/stalker314314/DocumentDBCpp
https://www.research.net/r/8BKRJ3Z
https://azure.microsoft.com/pricing/free-trial/
https://www.visualstudio.com/downloads/
https://portal.azure.com/

3. In the New accountNew account blade, specify the desired configuration for the DocumentDB account.

In the IDID box, enter a name to identify the DocumentDB account. When the IDID is validated, a green check

mark appears in the IDID box. The IDID value becomes the host name within the URI. The IDID may contain

only lowercase letters, numbers, and the '-' character, and must be between 3 and 50 characters. Note

that documents.azure.com is appended to the endpoint name you choose, the result of which becomes

your DocumentDB account endpoint.

 Step 2: Set up your C++ application

In the NoSQL APINoSQL API box, select DocumentDBDocumentDB.

For Subscr iptionSubscr iption , select the Azure subscription that you want to use for the DocumentDB account. If

your account has only one subscription, that account is selected by default.

In Resource GroupResource Group, select or create a resource group for your DocumentDB account. By default, a new

resource group is created. For more information, see Using the Azure portal to manage your Azure

resources.

Use LocationLocation to specify the geographic location in which to host your DocumentDB account.

4. Once the new DocumentDB account options are configured, click CreateCreate. To check the status of the

deployment, check the Notifications hub.

5. After the DocumentDB account is created, it is ready for use with the default settings. To review the default

settings, click the NoSQL (DocumentDB)NoSQL (DocumentDB) icon on the Jumpbar, click your new account, and then click

Default ConsistencyDefault Consistency in the Resource Menu.

The default consistency of the DocumentDB account is set to SessionSession . You can adjust the default

consistency by clicking Default ConsistencyDefault Consistency in the resource menu. To learn more about the consistency

levels offered by DocumentDB, see Consistency levels in DocumentDB.

1. Open Visual Studio, and then on the F ileF ile menu, click NewNew , and then click ProjectProject.

2. In the New ProjectNew Project window, in the InstalledInstalled pane, expand Visual C++Visual C++ , click Win32Win32 , and then click

Win32 Console ApplicationWin32 Console Application . Name the project hellodocumentdb and then click OKOK.

file:///D:/azure-docs-pr/_site/azure/.tmp/azure-portal/resource-group-portal.html

3. When the Win32 Application Wizard starts, click F inishFinish .

4. Once the project has been created, open the NuGet package manager by right-clicking the

hellodocumentdbhellodocumentdb project in Solution ExplorerSolution Explorer and clicking Manage NuGet PackagesManage NuGet Packages .

5. In the NuGet: hellodocumentdbNuGet: hellodocumentdb tab, click BrowseBrowse, and then search for documentdbcpp. In the results,

select DocumentDbCPP, as shown in the following screenshot. This package installs references to C++ REST

SDK, which is a dependency for the DocumentDbCPP.

Step 3: Copy connection details from Azure portal for your
DocumentDB database

Step 4: Connect to a DocumentDB account

Once the packages have been added to your project, we are all set to start writing some code.

Bring up Azure portal and traverse to the NoSQL (DocumentDB) database account you created. We will need the

URI and the primary key from Azure portal in the next step to establish a connection from our C++ code snippet.

 #include <cpprest/json.h>

 #include <documentdbcpp\DocumentClient.h>

 #include <documentdbcpp\exceptions.h>

 #include <documentdbcpp\TriggerOperation.h>

 #include <documentdbcpp\TriggerType.h>

 using namespace documentdb;

 using namespace std;

 using namespace web::json;

 DocumentDBConfiguration conf (L"<account_configuration_uri>", L"<primary_key>");

 DocumentClient client (conf);

1. Add the following headers and namespaces to your source code, after #include "stdafx.h" .

2. Next add the following code to your main function and replace the account configuration and primary key

to match your DocumentDB settings from step 3.

Now that you have the code to initialize the documentdb client, let's take a look at working with

DocumentDB resources.

https://portal.azure.com

Step 5: Create a C++ database and collection

try {

 shared_ptr<Database> db = client.CreateDatabase(L"FamilyRegistry");

 shared_ptr<Collection> coll = db->CreateCollection(L"FamilyCollection");

} catch (DocumentDBRuntimeException ex) {

 wcout << ex.message();

}

Step 6: Create a document

try {

 value document_family;

 document_family[L"id"] = value::string(L"AndersenFamily");

 document_family[L"FirstName"] = value::string(L"Thomas");

 document_family[L"LastName"] = value::string(L"Andersen");

 shared_ptr<Document> doc = coll->CreateDocumentAsync(document_family).get();

 document_family[L"id"] = value::string(L"WakefieldFamily");

 document_family[L"FirstName"] = value::string(L"Lucy");

 document_family[L"LastName"] = value::string(L"Wakefield");

 doc = coll->CreateDocumentAsync(document_family).get();

} catch (ResourceAlreadyExistsException ex) {

 wcout << ex.message();

}

Step 7: Query DocumentDB resources

Before we perform this step, let's go over how a database, collection and documents interact for those of you who

are new to DocumentDB. A database is a logical container of document storage portioned across collections. A

collection is a container of JSON documents and the associated JavaScript application logic. You can learn more

about the DocumentDB hierarchical resource model and concepts in DocumentDB hierarchical resource model

and concepts.

To create a database and a corresponding collection add the following code to the end of your main function. This

creates a database called 'FamilyRegistry’ and a collection called ‘FamilyCollection’ using the client configuration

you declared in the previous step.

Documents are user-defined (arbitrary) JSON content. You can now insert a document into DocumentDB. You can

create a document by copying the following code into the end of the main function.

To summarize, this code creates a DocumentDB database, collection, and documents, which you can query in

Document Explorer in Azure portal.

DocumentDB supports rich queries against JSON documents stored in each collection. The following sample code

void executesimplequery(const DocumentClient &client,

 const wstring dbresourceid,

 const wstring collresourceid) {

 try {

 client.GetDatabase(dbresourceid).get();

 shared_ptr<Database> db = client.GetDatabase(dbresourceid);

 shared_ptr<Collection> coll = db->GetCollection(collresourceid);

 wstring coll_name = coll->id();

 shared_ptr<DocumentIterator> iter =

 coll->QueryDocumentsAsync(wstring(L"SELECT * FROM " + coll_name)).get();

 wcout << "\n\nQuerying collection:";

 while (iter->HasMore()) {

 shared_ptr<Document> doc = iter->Next();

 wstring doc_name = doc->id();

 wcout << "\n\t" << doc_name << "\n";

 wcout << "\t"

 << "[{\"FirstName\":"

 << doc->payload().at(U("FirstName")).as_string()

 << ",\"LastName\":" << doc->payload().at(U("LastName")).as_string()

 << "}]";

 }

 } catch (DocumentDBRuntimeException ex) {

 wcout << ex.message();

 }

}

Step 8: Replace a document

void replacedocument(const DocumentClient &client, const wstring dbresourceid,

 const wstring collresourceid,

 const wstring docresourceid) {

 try {

 client.GetDatabase(dbresourceid).get();

 shared_ptr<Database> db = client.GetDatabase(dbresourceid);

 shared_ptr<Collection> coll = db->GetCollection(collresourceid);

 value newdoc;

 newdoc[L"id"] = value::string(L"WakefieldFamily");

 newdoc[L"FirstName"] = value::string(L"Lucy");

 newdoc[L"LastName"] = value::string(L"Smith Wakefield");

 coll->ReplaceDocument(docresourceid, newdoc);

 } catch (DocumentDBRuntimeException ex) {

 throw;

 }

}

Step 9: Delete a document

shows a query made using DocumentDB SQL syntax that you can run against the documents we created in the

previous step.

The function takes in as arguments the unique identifier or resource id for the database and the collection along

with the document client. Add this code before main function.

DocumentDB supports replacing JSON documents, as demonstrated in the following code. Add this code after the

executesimplequery function.

DocumentDB supports deleting JSON documents, you can do so by copy and pasting the following code after the

replacedocument function.

void deletedocument(const DocumentClient &client, const wstring dbresourceid,

 const wstring collresourceid, const wstring docresourceid) {

 try {

 client.GetDatabase(dbresourceid).get();

 shared_ptr<Database> db = client.GetDatabase(dbresourceid);

 shared_ptr<Collection> coll = db->GetCollection(collresourceid);

 coll->DeleteDocumentAsync(docresourceid).get();

 } catch (DocumentDBRuntimeException ex) {

 wcout << ex.message();

 }

}

Step 10: Delete a database

void deletedb(const DocumentClient &client, const wstring dbresourceid) {

 try {

 client.DeleteDatabase(dbresourceid);

 } catch (DocumentDBRuntimeException ex) {

 wcout << ex.message();

 }

}

Step 11: Run your C++ application all together!

Deleting the created database removes the database and all child resources (collections, documents, etc.).

Copy and paste the following code snippet (function cleanup) after the deletedocument function to remove the

database and all the child resources.

We have now added code to create, query, modify, and delete different DocumentDB resources. Let us now wire

this up by adding calls to these different functions from our main function in hellodocumentdb.cpp along with

some diagnostic messages.

You can do so by replacing the main function of your application with the following code. This writes over the

account_configuration_uri and primary_key you copied into the code in Step 3, so save that line or copy the values

in again from the portal.

int main() {

 try {

 // Start by defining your account's configuration

 DocumentDBConfiguration conf (L"<account_configuration_uri>", L"<primary_key>");

 // Create your client

 DocumentClient client(conf);

 // Create a new database

 try {

 shared_ptr<Database> db = client.CreateDatabase(L"FamilyDB");

 wcout << "\nCreating database:\n" << db->id();

 // Create a collection inside database

 shared_ptr<Collection> coll = db->CreateCollection(L"FamilyColl");

 wcout << "\n\nCreating collection:\n" << coll->id();

 value document_family;

 document_family[L"id"] = value::string(L"AndersenFamily");

 document_family[L"FirstName"] = value::string(L"Thomas");

 document_family[L"LastName"] = value::string(L"Andersen");

 shared_ptr<Document> doc =

 coll->CreateDocumentAsync(document_family).get();

 wcout << "\n\nCreating document:\n" << doc->id();

 document_family[L"id"] = value::string(L"WakefieldFamily");

 document_family[L"FirstName"] = value::string(L"Lucy");

 document_family[L"LastName"] = value::string(L"Wakefield");

 doc = coll->CreateDocumentAsync(document_family).get();

 wcout << "\n\nCreating document:\n" << doc->id();

 executesimplequery(client, db->resource_id(), coll->resource_id());

 replacedocument(client, db->resource_id(), coll->resource_id(),

 doc->resource_id());

 wcout << "\n\nReplaced document:\n" << doc->id();

 executesimplequery(client, db->resource_id(), coll->resource_id());

 deletedocument(client, db->resource_id(), coll->resource_id(),

 doc->resource_id());

 wcout << "\n\nDeleted document:\n" << doc->id();

 deletedb(client, db->resource_id());

 wcout << "\n\nDeleted db:\n" << db->id();

 cin.get();

 }

 catch (ResourceAlreadyExistsException ex) {

 wcout << ex.message();

 }

 }

 catch (DocumentDBRuntimeException ex) {

 wcout << ex.message();

 }

 cin.get();

}

You should now be able to build and run your code in Visual Studio by pressing F5 or alternatively in the terminal

window by locating the application and running the executable.

You should see the output of your get started app. The output should match the following screenshot.

 Get the complete C++ tutorial solution

Next steps

Congratulations! You've completed the C++ tutorial and have your first DocumentDB console application!

To build the GetStarted solution that contains all the samples in this article, you need the following:

DocumentDB account.

The GetStarted solution available on GitHub.

Learn how to monitor a DocumentDB account.

Run queries against our sample dataset in the Query Playground.

Learn more about the programming model in the Develop section of the DocumentDB documentation page.

https://github.com/stalker314314/DocumentDBCpp
https://www.documentdb.com/sql/demo
https://azure.microsoft.com/documentation/services/documentdb/

Syam Nair • mimig • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • Andrew Liu • joescars • Loren Paulsen • arramac

• Ryan CrawCour • v-aljenk • Dan Friedman • Dene Hager

ASP.NET MVC Tutorial: Web application
development with DocumentDB
11/22/2016 • 19 min to read • Edit on GitHub

Contributors

TIP

Prerequisites for this database tutorial

To highlight how you can efficiently leverage Azure DocumentDB to store and query JSON documents, this article

provides an end-to-end walk-through showing you how to build a todo app using Azure DocumentDB. The tasks

will be stored as JSON documents in Azure DocumentDB.

This walk-through shows you how to use the DocumentDB service provided by Azure to store and access data

from an ASP.NET MVC web application hosted on Azure. If you're looking for a tutorial that focuses only on

DocumentDB, and not the ASP.NET MVC components, see Build a DocumentDB C# console application.

This tutorial assumes that you have prior experience using ASP.NET MVC and Azure Websites. If you are new to ASP.NET or

the prerequisite tools, we recommend downloading the complete sample project from GitHub and following the instructions

in this sample. Once you have it built, you can review this article to gain insight on the code in the context of the project.

Before following the instructions in this article, you should ensure that you have the following:

An active Azure account. If you don't have an account, you can create a free trial account in just a couple of

minutes. For details, see Azure Free Trial

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-dotnet-application.md
https://github.com/syamkmsft
https://github.com/mimig1
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/aliuy
https://github.com/joescars
https://github.com/lorenpaulsen
https://github.com/arramac
https://github.com/ryancrawcour
https://github.com/v-aljenk
https://github.com/MisinformedDNA
https://github.com/deneha
https://github.com/Azure-Samples/documentdb-net-todo-app
https://azure.microsoft.com/pricing/free-trial/

 Step 1: Create a DocumentDB database account

Visual Studio 2015 or Visual Studio 2013 Update 4 or higher. If using Visual Studio 2013, you will need to

install the Microsoft.Net.Compilers nuget package to add support for C# 6.0.

Azure SDK for .NET version 2.5.1 or higher, available through the Microsoft Web Platform Installer.

OR

A local installation of the Azure DocumentDB Emulator.

All the screen shots in this article have been taken using Visual Studio 2013 with Update 4 applied and the Azure

SDK for .NET version 2.5.1. If your system is configured with different versions it is possible that your screens and

options won't match entirely, but if you meet the above prerequisites this solution should work.

Let's start by creating a DocumentDB account. If you already have an account or if you are using the DocumentDB

Emulator for this tutorial, you can skip to Create a new ASP.NET MVC application.

1. Sign in to the Azure portal.

2. In the Jumpbar, click NewNew , click DatabasesDatabases , and then click NoSQL (DocumentDB)NoSQL (DocumentDB) .

3. In the New accountNew account blade, specify the desired configuration for the DocumentDB account.

http://www.visualstudio.com/
https://www.nuget.org/packages/Microsoft.Net.Compilers/
http://www.microsoft.com/web/downloads/platform.aspx
https://portal.azure.com/

In the IDID box, enter a name to identify the DocumentDB account. When the IDID is validated, a green

check mark appears in the IDID box. The IDID value becomes the host name within the URI. The IDID may

contain only lowercase letters, numbers, and the '-' character, and must be between 3 and 50 characters.

Note that documents.azure.com is appended to the endpoint name you choose, the result of which

becomes your DocumentDB account endpoint.

In the NoSQL APINoSQL API box, select DocumentDBDocumentDB.

For Subscr iptionSubscr iption , select the Azure subscription that you want to use for the DocumentDB account. If

your account has only one subscription, that account is selected by default.

In Resource GroupResource Group, select or create a resource group for your DocumentDB account. By default, a new

resource group is created. For more information, see Using the Azure portal to manage your Azure

resources.

Use LocationLocation to specify the geographic location in which to host your DocumentDB account.

4. Once the new DocumentDB account options are configured, click CreateCreate. To check the status of the

deployment, check the Notifications hub.

5. After the DocumentDB account is created, it is ready for use with the default settings. To review the default

settings, click the NoSQL (DocumentDB)NoSQL (DocumentDB) icon on the Jumpbar, click your new account, and then click

Default ConsistencyDefault Consistency in the Resource Menu.

file:///D:/azure-docs-pr/_site/azure/.tmp/azure-portal/resource-group-portal.html

 Step 2: Create a new ASP.NET MVC application

The default consistency of the DocumentDB account is set to SessionSession . You can adjust the default

consistency by clicking Default ConsistencyDefault Consistency in the resource menu. To learn more about the consistency

levels offered by DocumentDB, see Consistency levels in DocumentDB.

Now navigate to the DocumentDB account blade, and click KeysKeys , as we will use these values in the web

application we create next.

We will now walk through how to create a new ASP.NET MVC application from the ground-up.

Now that you have an account, let's create our new ASP.NET project.

The **New Project** dialog box appears.

1. In Visual Studio, on the F ileF ile menu, point to NewNew , and then click ProjectProject.

2. In the Project typesProject types pane, expand TemplatesTemplates , Visual C#Visual C#, WebWeb, and then select ASP.NET WebASP.NET Web

ApplicationApplication .

3. In the NameName box, type the name of the project. This tutorial uses the name "todo". If you choose to use

something other than this, then wherever this tutorial talks about the todo namespace, you need to adjust the

provided code samples to use whatever you named your application.

5. In the templates pane, select MVCMVC .

4. Click BrowseBrowse to navigate to the folder where you would like to create the project, and then click OKOK.

The New ASP.NET ProjectNew ASP.NET Project dialog box appears.

 Step 3: Add DocumentDB to your MVC web application project

6. If you plan on hosting your application in Azure then select Host in the cloudHost in the cloud on the lower right to have

Azure host the application. We've selected to host in the cloud, and to run the application hosted in an Azure

Website. Selecting this option will preprovision an Azure Website for you and make life a lot easier when it

comes time to deploy the final working application. If you want to host this elsewhere or don't want to

configure Azure upfront, then just clear Host in the CloudHost in the Cloud.

7. Click OKOK and let Visual Studio do its thing around scaffolding the empty ASP.NET MVC template.

If you receive the error "An error occurred while processing your request" see the Troubleshooting section.

8. If you chose to host this in the cloud you will see at least one additional screen asking you to login to your

Azure account and provide some values for your new website. Supply all the additional values and

continue.

I haven't chosen a "Database server" here because we're not using an Azure SQL Database Server here,

we're going to be creating a new Azure DocumentDB account later on in the Azure Portal.

For more information about choosing an App Serv ice planApp Serv ice plan and Resource groupResource group, see Azure App Service

plans in-depth overview.

9. Once Visual Studio has finished creating the boilerplate MVC application you have an empty ASP.NET

application that you can run locally.

We'll skip running the project locally because I'm sure we've all seen the ASP.NET "Hello World"

application. Let's go straight to adding DocumentDB to this project and building our application.

Now that we have most of the ASP.NET MVC plumbing that we need for this solution, let's get to the real purpose

of this tutorial, adding Azure DocumentDB to our MVC web application.

1. The DocumentDB .NET SDK is packaged and distributed as a NuGet package. To get the NuGet package in

Visual Studio, use the NuGet package manager in Visual Studio by right-clicking on the project in SolutionSolution

ExplorerExplorer and then clicking Manage NuGet PackagesManage NuGet Packages .

file:///D:/azure-docs-pr/_site/azure/.tmp/app-service/azure-web-sites-web-hosting-plans-in-depth-overview.html

The Manage NuGet PackagesManage NuGet Packages dialog box appears.

2. In the NuGet BrowseBrowse box, type Azure DocumentDBAzure DocumentDB.

From the results, install the Microsoft Azure DocumentDB Client L ibraryMicrosoft Azure DocumentDB Client L ibrary package. This will download

and install the DocumentDB package as well as all dependencies, like Newtonsoft.Json. Click OKOK in the

Prev iewPrev iew window, and I AcceptI Accept in the L icense AcceptanceL icense Acceptance window to complete the install.

Alternatively you can use the Package Manager Console to install the package. To do so, on the ToolsTools

menu, click NuGet Package ManagerNuGet Package Manager , and then click Package Manager ConsolePackage Manager Console . At the prompt, type

the following.

Step 4: Set up the ASP.NET MVC application

Add a JSON data model

 Install-Package Microsoft.Azure.DocumentDB

3. Once the package is installed, your Visual Studio solution should resemble the following with two new

references added, Microsoft.Azure.Documents.Client and Newtonsoft.Json.

Now let's add the models, views, and controllers to this MVC application:

Add a model.

Add a controller.

Add views.

Let's begin by creating the MM in MVC, the model.

2. Name your new class Item.csItem.cs and click AddAdd.

 using Newtonsoft.Json;

 public class Item

 {

 }

1. In Solution ExplorerSolution Explorer , right-click the ModelsModels folder, click AddAdd, and then click ClassClass .

The Add New ItemAdd New Item dialog box appears.

3. In this new Item.csItem.cs file, add the following after the last using statement.

4. Now replace this code

 Add a controller

 public class Item

 {

 [JsonProperty(PropertyName = "id")]

 public string Id { get; set; }

 [JsonProperty(PropertyName = "name")]

 public string Name { get; set; }

 [JsonProperty(PropertyName = "description")]

 public string Description { get; set; }

 [JsonProperty(PropertyName = "isComplete")]

 public bool Completed { get; set; }

 }

with the following code.

All data in DocumentDB is passed over the wire and stored as JSON. To control the way your objects are

serialized/deserialized by JSON.NET you can use the JsonPropertyJsonProperty attribute as demonstrated in the ItemItem

class we just created. You don't havehave to do this but I want to ensure that my properties follow the JSON

camelCase naming conventions.

Not only can you control the format of the property name when it goes into JSON, but you can entirely

rename your .NET properties like I did with the Descr iptionDescr iption property.

That takes care of the MM, now let's create the CC in MVC, a controller class.

1. In Solution ExplorerSolution Explorer , right-click the ControllersControllers folder, click AddAdd, and then click ControllerController .

The Add ScaffoldAdd Scaffold dialog box appears.

2. Select MVC 5 Controller - EmptyMVC 5 Controller - Empty and then click AddAdd.

3. Name your new Controller, ItemController .ItemController .

Add views

Add an Item Index view

Once the file is created, your Visual Studio solution should resemble the following with the new

ItemController.cs file in Solution ExplorerSolution Explorer . The new Item.cs file created earlier is also shown.

You can close ItemController.cs, we'll come back to it later.

Now, let's create the VV in MVC, the views:

Add an Item Index view.

Add a New Item view.

Add an Edit Item view.

1. In Solution ExplorerSolution Explorer , expand the ViewsViews folder, right-click the empty ItemItem folder that Visual Studio

created for you when you added the ItemControllerItemController earlier, click AddAdd, and then click ViewView .

2. In the Add ViewAdd View dialog box, do the following:

In the View nameView name box, type IndexIndex.

In the TemplateTemplate box, select L istL ist .

In the Model classModel class box, select Item (todo.Models)Item (todo.Models) .

Leave the Data context classData context class box empty.

In the layout page box, type ~/Views/Shared/_Layout.cshtml~/Views/Shared/_Layout.cshtml .

Add a New Item view

Add an Edit Item view

Step 5: Wiring up DocumentDB

Listing incomplete Items in your MVC web application

3. Once all these values are set, click AddAdd and let Visual Studio create a new template view. Once it is done, it will

open the cshtml file that was created. We can close that file in Visual Studio as we will come back to it later.

Similar to how we created an Item IndexItem Index view, we will now create a new view for creating new ItemsItems .

1. In Solution ExplorerSolution Explorer , right-click the ItemItem folder again, click AddAdd, and then click ViewView .

2. In the Add ViewAdd View dialog box, do the following:

In the View nameView name box, type CreateCreate.

In the TemplateTemplate box, select CreateCreate.

In the Model classModel class box, select Item (todo.Models)Item (todo.Models) .

Leave the Data context classData context class box empty.

In the layout page box, type ~/Views/Shared/_Layout.cshtml~/Views/Shared/_Layout.cshtml .

Click AddAdd.

And finally, add one last view for editing an ItemItem in the same way as before.

1. In Solution ExplorerSolution Explorer , right-click the ItemItem folder again, click AddAdd, and then click ViewView .

2. In the Add ViewAdd View dialog box, do the following:

In the View nameView name box, type EditEdit .

In the TemplateTemplate box, select EditEdit .

In the Model classModel class box, select Item (todo.Models)Item (todo.Models) .

Leave the Data context classData context class box empty.

In the layout page box, type ~/Views/Shared/_Layout.cshtml~/Views/Shared/_Layout.cshtml .

Click AddAdd.

Once this is done, close all the cshtml documents in Visual Studio as we will return to these views later.

Now that the standard MVC stuff is taken care of, let's turn to adding the code for DocumentDB.

In this section, we'll add code to handle the following:

Listing incomplete Items.

Adding Items.

Editing Items.

The first thing to do here is add a class that contains all the logic to connect to and use DocumentDB. For this

tutorial we'll encapsulate all this logic in to a repository class called DocumentDBRepository.

1. In Solution ExplorerSolution Explorer , right-click on the project, click AddAdd, and then click ClassClass . Name the new class

DocumentDBRepositoryDocumentDBRepository and click AddAdd.

2. In the newly created DocumentDBRepositoryDocumentDBRepository class and add the following using statements above the

namespace declaration

 using Microsoft.Azure.Documents;

 using Microsoft.Azure.Documents.Client;

 using Microsoft.Azure.Documents.Linq;

 using System.Configuration;

 using System.Linq.Expressions;

 using System.Threading.Tasks;

 public class DocumentDBRepository

 {

 }

Now replace this code

with the following code.

 public static class DocumentDBRepository<T> where T : class

 {

 private static readonly string DatabaseId = ConfigurationManager.AppSettings["database"];

 private static readonly string CollectionId = ConfigurationManager.AppSettings["collection"];

 private static DocumentClient client;

 public static void Initialize()

 {

 client = new DocumentClient(new Uri(ConfigurationManager.AppSettings["endpoint"]),

ConfigurationManager.AppSettings["authKey"]);

 CreateDatabaseIfNotExistsAsync().Wait();

 CreateCollectionIfNotExistsAsync().Wait();

 }

 private static async Task CreateDatabaseIfNotExistsAsync()

 {

 try

 {

 await client.ReadDatabaseAsync(UriFactory.CreateDatabaseUri(DatabaseId));

 }

 catch (DocumentClientException e)

 {

 if (e.StatusCode == System.Net.HttpStatusCode.NotFound)

 {

 await client.CreateDatabaseAsync(new Database { Id = DatabaseId });

 }

 else

 {

 throw;

 }

 }

 }

 private static async Task CreateCollectionIfNotExistsAsync()

 {

 try

 {

 await client.ReadDocumentCollectionAsync(UriFactory.CreateDocumentCollectionUri(DatabaseId,

CollectionId));

 }

 catch (DocumentClientException e)

 {

 if (e.StatusCode == System.Net.HttpStatusCode.NotFound)

 {

 await client.CreateDocumentCollectionAsync(

 UriFactory.CreateDatabaseUri(DatabaseId),

 new DocumentCollection { Id = CollectionId },

 new RequestOptions { OfferThroughput = 1000 });

 }

 else

 {

 throw;

 }

 }

 }

 }

TIP

When creating a new DocumentCollection you can supply an optional RequestOptions parameter of OfferType,

which allows you to specify the performance level of the new collection. If this parameter is not passed the default

offer type will be used. For more on DocumentDB offer types please refer to DocumentDB Performance Levels

3. We're reading some values from configuration, so open the Web.configWeb.config file of your application and add

 <add key="endpoint" value="enter the URI from the Keys blade of the Azure Portal"/>

 <add key="authKey" value="enter the PRIMARY KEY, or the SECONDARY KEY, from the Keys blade of the Azure

Portal"/>

 <add key="database" value="ToDoList"/>

 <add key="collection" value="Items"/>

 public static async Task<IEnumerable<T>> GetItemsAsync(Expression<Func<T, bool>> predicate)

 {

 IDocumentQuery<T> query = client.CreateDocumentQuery<T>(

 UriFactory.CreateDocumentCollectionUri(DatabaseId, CollectionId))

 .Where(predicate)

 .AsDocumentQuery();

 List<T> results = new List<T>();

 while (query.HasMoreResults)

 {

 results.AddRange(await query.ExecuteNextAsync<T>());

 }

 return results;

 }

 using System.Net;

 using System.Threading.Tasks;

 using todo.Models;

 //GET: Item

 public ActionResult Index()

 {

 return View();

 }

 [ActionName("Index")]

 public async Task<ActionResult> IndexAsync()

 {

 var items = await DocumentDBRepository<Item>.GetItemsAsync(d => !d.Completed);

 return View(items);

 }

the following lines under the <AppSettings> section.

4. Now, update the values for endpoint and authKey using the Keys blade of the Azure Portal. Use the URIURI

from the Keys blade as the value of the endpoint setting, and use the PR IMARY KEYPRIMARY KEY , or SECONDARYSECONDARY

KEYKEY from the Keys blade as the value of the authKey setting.

That takes care of wiring up the DocumentDB repository, now let's add our application logic.

5. The first thing we want to be able to do with a todo list application is to display the incomplete items. Copy

and paste the following code snippet anywhere within the DocumentDBRepositoryDocumentDBRepository class.

6. Open the ItemControllerItemController we added earlier and add the following using statements above the namespace

declaration.

If your project is not named "todo", then you need to update using "todo.Models"; to reflect the name of

your project.

Now replace this code

with the following code.

 defaults: new { controller = "Item", action = "Index", id = UrlParameter.Optional }

Adding Items

 DocumentDBRepository<todo.Models.Item>.Initialize();

7. Open Global.asax.csGlobal.asax.cs and add the following line to the Application_S tar tApplication_S tar t method

At this point your solution should be able to build without any errors.

If you ran the application now, you would go to the HomeControllerHomeController and the IndexIndex view of that controller. This

is the default behavior for the MVC template project we chose at the start but we don't want that! Let's change the

routing on this MVC application to alter this behavior.

Open App_Star t\RouteConfig.csApp_Star t\RouteConfig.cs and locate the line starting with "defaults:" and change it to resemble the

following.

This now tells ASP.NET MVC that if you have not specified a value in the URL to control the routing behavior that

instead of HomeHome, use ItemItem as the controller and user IndexIndex as the view.

Now if you run the application, it will call into your ItemControllerItemController which will call in to the repository class and

use the GetItems method to return all the incomplete items to the ViewsViews \ItemItem \IndexIndex view.

If you build and run this project now, you should now see something that looks this.

Let's put some items into our database so we have something more than an empty grid to look at.

Let's add some code to DocumentDBRepository and ItemController to persist the record in DocumentDB.

public static async Task<Document> CreateItemAsync(T item)

{

 return await client.CreateDocumentAsync(UriFactory.CreateDocumentCollectionUri(DatabaseId,

CollectionId), item);

}

 [ActionName("Create")]

 public async Task<ActionResult> CreateAsync()

 {

 return View();

 }

1. Add the following method to your DocumentDBRepositoryDocumentDBRepository class.

This method simply takes an object passed to it and persists it in DocumentDB.

2. Open the ItemController.cs file and add the following code snippet within the class. This is how ASP.NET

MVC knows what to do for the CreateCreate action. In this case just render the associated Create.cshtml view

created earlier.

 Editing Items

 [HttpPost]

 [ActionName("Create")]

 [ValidateAntiForgeryToken]

 public async Task<ActionResult> CreateAsync([Bind(Include = "Id,Name,Description,Completed")] Item item)

 {

 if (ModelState.IsValid)

 {

 await DocumentDBRepository<Item>.CreateItemAsync(item);

 return RedirectToAction("Index");

 }

 return View(item);

 }

We now need some more code in this controller that will accept the submission from the CreateCreate view.

3. Add the next block of code to the ItemController.cs class that tells ASP.NET MVC what to do with a form

POST for this controller.

This code calls in to the DocumentDBRepository and uses the CreateItemAsync method to persist the new

todo item to the database.

Secur ity NoteSecur ity Note: The ValidateAntiForgeryTokenValidateAntiForgeryToken attribute is used here to help protect this application

against cross-site request forgery attacks. There is more to it than just adding this attribute, your views

need to work with this anti-forgery token as well. For more on the subject, and examples of how to

implement this correctly, please see Preventing Cross-Site Request Forgery. The source code provided on

GitHub has the full implementation in place.

Secur ity NoteSecur ity Note: We also use the BindBind attribute on the method parameter to help protect against over-

posting attacks. For more details please see Basic CRUD Operations in ASP.NET MVC.

This concludes the code required to add new Items to our database.

There is one last thing for us to do, and that is to add the ability to edit ItemsItems in the database and to mark them as

complete. The view for editing was already added to the project, so we just need to add some code to our

controller and to the DocumentDBRepositoryDocumentDBRepository class again.

1. Add the following to the DocumentDBRepositoryDocumentDBRepository class.

http://go.microsoft.com/fwlink/?LinkID=517254
https://github.com/Azure-Samples/documentdb-net-todo-app
http://go.microsoft.com/fwlink/?LinkId=317598

 public static async Task<Document> UpdateItemAsync(string id, T item)

 {

 return await client.ReplaceDocumentAsync(UriFactory.CreateDocumentUri(DatabaseId, CollectionId, id),

item);

 }

 public static async Task<T> GetItemAsync(string id)

 {

 try

 {

 Document document = await client.ReadDocumentAsync(UriFactory.CreateDocumentUri(DatabaseId,

CollectionId, id));

 return (T)(dynamic)document;

 }

 catch (DocumentClientException e)

 {

 if (e.StatusCode == HttpStatusCode.NotFound)

 {

 return null;

 }

 else

 {

 throw;

 }

 }

 }

 [HttpPost]

 [ActionName("Edit")]

 [ValidateAntiForgeryToken]

 public async Task<ActionResult> EditAsync([Bind(Include = "Id,Name,Description,Completed")] Item item)

 {

 if (ModelState.IsValid)

 {

 await DocumentDBRepository<Item>.UpdateItemAsync(item.Id, item);

 return RedirectToAction("Index");

 }

 return View(item);

 }

 [ActionName("Edit")]

 public async Task<ActionResult> EditAsync(string id)

 {

 if (id == null)

 {

 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);

 }

 Item item = await DocumentDBRepository<Item>.GetItemAsync(id);

 if (item == null)

 {

 return HttpNotFound();

 }

 return View(item);

 }

The first of these methods, GetItemGetItem fetches an Item from DocumentDB which is passed back to the

ItemControllerItemController and then on to the EditEdit view.

The second of the methods we just added replaces the DocumentDocument in DocumentDB with the version of the

DocumentDocument passed in from the ItemControllerItemController .

2. Add the following to the ItemControllerItemController class.

 Step 6: Run the application locally

The first method handles the Http GET that happens when the user clicks on the EditEdit link from the IndexIndex

view. This method fetches a DocumentDocument from DocumentDB and passes it to the EditEdit view.

The EditEdit view will then do an Http POST to the IndexControllerIndexController .

The second method we added handles passing the updated object to DocumentDB to be persisted in the

database.

That's it, that is everything we need to run our application, list incomplete ItemsItems , add new ItemsItems , and edit ItemsItems .

To test the application on your local machine, do the following:

1. Hit F5 in Visual Studio to build the application in debug mode. It should build the application and launch a

browser with the empty grid page we saw before:

If you are using Visual Studio 2013 and receive the error "Cannot await in the body of a catch clause." you

need to install the Microsoft.Net.Compilers nuget package. You can also compare your code against the

sample project on GitHub.

2. Click the Create NewCreate New link and add values to the NameName and Descr iptionDescr iption fields. Leave the CompletedCompleted

check box unselected otherwise the new ItemItem will be added in a completed state and will not appear on the

initial list.

3. Click CreateCreate and you are redirected back to the IndexIndex view and your ItemItem appears in the list.

http://msdn.microsoft.com/library/azure/microsoft.azure.documents.document.aspx
https://www.nuget.org/packages/Microsoft.Net.Compilers/
https://github.com/Azure-Samples/documentdb-net-todo-app

 Step 7: Deploy the application to Azure Websites

5. Once you've tested the app, press Ctrl+F5 to stop debugging the app. You're ready to deploy!

Feel free to add a few more ItemsItems to your todo list.

4. Click EditEdit next to an ItemItem on the list and you are taken to the EditEdit view where you can update any

property of your object, including the CompletedCompleted flag. If you mark the CompleteComplete flag and click SaveSave, the

ItemItem is removed from the list of incomplete tasks.

Now that you have the complete application working correctly with DocumentDB we're going to deploy this web

app to Azure Websites. If you selected Host in the cloudHost in the cloud when you created the empty ASP.NET MVC project

then Visual Studio makes this really easy and does most of the work for you.

1. To publish this application all you need to do is right-click on the project in Solution ExplorerSolution Explorer and click

PublishPublish .

 Troubleshooting

2. Everything should already be configured according to your credentials; in fact the website has already been

created in Azure for you at the Destination URLDestination URL shown, all you need to do is click PublishPublish .

In a few seconds, Visual Studio will finish publishing your web application and launch a browser where you can

see your handy work running in Azure!

If you receive the "An error occurred while processing your request" while trying to deploy the web app, do the

following:

1. Cancel out of the error message and then select Microsoft Azure Web AppsMicrosoft Azure Web Apps again.

2. Login and then select NewNew to create a new web app.

3. On the Create a Web App on Microsoft AzureCreate a Web App on Microsoft Azure screen, do the following:

Web App name: "todo-net-app"

 Next steps

App Service plan: Create new, named "todo-net-app"

Resource group: Create new, named "todo-net-app"

Region: Select the region closest to your app users

Database server: Click no database, then click CreateCreate.

4. In the "todo-net-app * screen", click Validate ConnectionValidate Connection . After the connection is verified, PublishPublish .

The app then gets displayed on your browser.

Congratulations! You just built your first ASP.NET MVC web application using Azure DocumentDB and published

it to Azure Websites. The source code for the complete application, including the detail and delete functionality

that were not included in this tutorial can be downloaded or cloned from GitHub. So if you're interested in adding

that to your app, grab the code and add it to this app.

To add additional functionality to your application, review the APIs available in the DocumentDB .NET Library and

feel free to contribute to the DocumentDB .NET Library on GitHub.

https://github.com/Azure-Samples/documentdb-net-todo-app
https://msdn.microsoft.com/library/azure/dn948556.aspx
https://github.com/Azure-Samples/documentdb-net-todo-app

Syam Nair • mimig • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • carolinacmoravia • Andrew Hoh • Andrew Liu

• Cephas Lin • arramac • Ryan CrawCour • v-aljenk • Tom Dykstra • Dene Hager

Build a Node.js web application using DocumentDB
11/22/2016 • 13 min to read • Edit on GitHub

Contributors

This Node.js tutorial shows you how to use the Azure DocumentDB service to store and access data from a Node.js

Express application hosted on Azure Websites.

We recommend getting started by watching the following video, where you will learn how to provision an Azure

DocumentDB database account and store JSON documents in your Node.js application.

Then, return to this Node.js tutorial, where you'll learn the answers to the following questions:

How do I work with DocumentDB using the documentdb npm module?

How do I deploy the web application to Azure Websites?

By following this database tutorial, you will build a simple web-based task-management application that allows

creating, retrieving and completing of tasks. The tasks will be stored as JSON documents in Azure DocumentDB.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-nodejs-application.md
https://github.com/syamkmsft
https://github.com/mimig1
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/carolinacmoravia
https://github.com/AndrewHoh
https://github.com/aliuy
https://github.com/cephalin
https://github.com/arramac
https://github.com/ryancrawcour
https://github.com/v-aljenk
https://github.com/tdykstra
https://github.com/deneha

Prerequisites

TIP

Step 1: Create a DocumentDB database account

Don't have time to complete the tutorial and just want to get the complete solution? Not a problem, you can get

the complete sample solution from GitHub.

This Node.js tutorial assumes that you have some prior experience using Node.js and Azure Websites.

Before following the instructions in this article, you should ensure that you have the following:

Node.js version v0.10.29 or higher.

Express generator (you can install this via npm install express-generator -g)

Git.

An active Azure account. If you don't have an account, you can create a free trial account in just a couple of

minutes. For details, see Azure Free Trial

OR

A local installation of the Azure DocumentDB Emulator.

Let's start by creating a DocumentDB account. If you already have an account or if you are using the DocumentDB

Emulator for this tutorial, you can skip to Step 2: Create a new Node.js application.

1. Sign in to the Azure portal.

2. In the Jumpbar, click NewNew , click DatabasesDatabases , and then click NoSQL (DocumentDB)NoSQL (DocumentDB) .

https://github.com/Azure-Samples/documentdb-node-todo-app
https://azure.microsoft.com/pricing/free-trial/
http://nodejs.org/
http://www.expressjs.com/starter/generator.html
http://git-scm.com/
https://portal.azure.com/

3. In the New accountNew account blade, specify the desired configuration for the DocumentDB account.

In the IDID box, enter a name to identify the DocumentDB account. When the IDID is validated, a green check

mark appears in the IDID box. The IDID value becomes the host name within the URI. The IDID may contain

only lowercase letters, numbers, and the '-' character, and must be between 3 and 50 characters. Note

that documents.azure.com is appended to the endpoint name you choose, the result of which becomes

your DocumentDB account endpoint.

In the NoSQL APINoSQL API box, select DocumentDBDocumentDB.

For Subscr iptionSubscr iption , select the Azure subscription that you want to use for the DocumentDB account. If

your account has only one subscription, that account is selected by default.

In Resource GroupResource Group, select or create a resource group for your DocumentDB account. By default, a new

resource group is created. For more information, see Using the Azure portal to manage your Azure

resources.

Use LocationLocation to specify the geographic location in which to host your DocumentDB account.

4. Once the new DocumentDB account options are configured, click CreateCreate. To check the status of the

deployment, check the Notifications hub.

5. After the DocumentDB account is created, it is ready for use with the default settings. To review the default

settings, click the NoSQL (DocumentDB)NoSQL (DocumentDB) icon on the Jumpbar, click your new account, and then click

Default ConsistencyDefault Consistency in the Resource Menu.

The default consistency of the DocumentDB account is set to SessionSession . You can adjust the default

consistency by clicking Default ConsistencyDefault Consistency in the resource menu. To learn more about the consistency

levels offered by DocumentDB, see Consistency levels in DocumentDB.

Now navigate to the DocumentDB account blade, and click KeysKeys , as we will use these values in the web

application we create next.

file:///D:/azure-docs-pr/_site/azure/.tmp/azure-portal/resource-group-portal.html

 Step 2: Learn to create a new Node.js application

Now let's learn to create a basic Hello World Node.js project using the Express framework.

1. Open your favorite terminal.

 express todo

 cd todo

 npm install

 npm start

2. Use the express generator to generate a new application called todotodo.

3. Open your new todotodo directory and install dependencies.

4. Run your new application.

5. You can view your new application by navigating your browser to http://localhost:3000.

http://expressjs.com/
http://localhost:3000
http://localhost:3000

 Step 3: Install additional modules

The package.jsonpackage.json file is one of the files created in the root of the project. This file contains a list of additional

modules that are required for your Node.js application. Later, when you deploy this application to an Azure

Websites, this file is used to determine which modules need to be installed on Azure to support your application.

We still need to install two more packages for this tutorial.

 npm install async --save

 npm install documentdb --save

1. Back in the terminal, install the asyncasync module via npm.

2. Install the documentdbdocumentdb module via npm. This is the module where all the DocumentDB magic happens.

3. A quick check of the package.jsonpackage.json file of the application should show the additional modules. This file will

tell Azure which packages to download and install when running your application. It should resemble the

example below.

 Step 4: Using the DocumentDB service in a node application

Create the model

This tells Node (and Azure later) that your application depends on these additional modules.

That takes care of all the initial setup and configuration, now let’s get down to why we’re here, and that’s to write

some code using Azure DocumentDB.

1. In the project directory, create a new directory named modelsmodels .

2. In the modelsmodels directory, create a new file named taskDao.jstaskDao.js . This file will contain the model for the tasks

created by our application.

3. In the same modelsmodels directory, create another new file named docdbUtils .jsdocdbUtils .js . This file will contain some useful,

reusable, code that we will use throughout our application.

4. Copy the following code in to docdbUtils .jsdocdbUtils .js

 var DocumentDBClient = require('documentdb').DocumentClient;

 var DocDBUtils = {

 getOrCreateDatabase: function (client, databaseId, callback) {

 var querySpec = {

 query: 'SELECT * FROM root r WHERE r.id= @id',

 parameters: [{

 name: '@id',

 value: databaseId

 }]

 };

 client.queryDatabases(querySpec).toArray(function (err, results) {

 if (err) {

 callback(err);

 } else {

 if (results.length === 0) {

 var databaseSpec = {

 id: databaseId

 };

 client.createDatabase(databaseSpec, function (err, created) {

 callback(null, created);

 });

 } else {

 callback(null, results[0]);

 }

 }

 });

 },

 getOrCreateCollection: function (client, databaseLink, collectionId, callback) {

 var querySpec = {

 query: 'SELECT * FROM root r WHERE r.id=@id',

 parameters: [{

 name: '@id',

 value: collectionId

 }]

 };

 client.queryCollections(databaseLink, querySpec).toArray(function (err, results) {

 if (err) {

 callback(err);

 } else {

 if (results.length === 0) {

 var collectionSpec = {

 id: collectionId

 };

 client.createCollection(databaseLink, collectionSpec, function (err, created) {

 callback(null, created);

 });

 } else {

 callback(null, results[0]);

 }

 }

 });

 }

 };

 module.exports = DocDBUtils;

TIP

5. Save and close the docdbUtils .jsdocdbUtils .js file.

 var DocumentDBClient = require('documentdb').DocumentClient;

 var docdbUtils = require('./docdbUtils');

 function TaskDao(documentDBClient, databaseId, collectionId) {

 this.client = documentDBClient;

 this.databaseId = databaseId;

 this.collectionId = collectionId;

 this.database = null;

 this.collection = null;

 }

 module.exports = TaskDao;

 TaskDao.prototype = {

 init: function (callback) {

 var self = this;

 docdbUtils.getOrCreateDatabase(self.client, self.databaseId, function (err, db) {

 if (err) {

 callback(err);

 } else {

 self.database = db;

 docdbUtils.getOrCreateCollection(self.client, self.database._self, self.collectionId,

function (err, coll) {

 if (err) {

 callback(err);

 } else {

 self.collection = coll;

 }

 });

 }

 });

 },

 find: function (querySpec, callback) {

 var self = this;

 self.client.queryDocuments(self.collection._self, querySpec).toArray(function (err, results) {

 if (err) {

 callback(err);

 } else {

createCollection takes an optional requestOptions parameter that can be used to specify the Offer Type for the

Collection. If no requestOptions.offerType value is supplied then the Collection will be created using the default Offer

Type.

For more information on DocumentDB Offer Types please refer to Performance levels in DocumentDB

6. At the beginning of the taskDao.jstaskDao.js file, add the following code to reference the DocumentDBClientDocumentDBClient and

the docdbUtils .jsdocdbUtils .js we created above:

7. Next, you will add code to define and export the Task object. This is responsible for initializing our Task

object and setting up the Database and Document Collection we will use.

8. Next, add the following code to define additional methods on the Task object, which allow interactions with

data stored in DocumentDB.

 } else {

 callback(null, results);

 }

 });

 },

 addItem: function (item, callback) {

 var self = this;

 item.date = Date.now();

 item.completed = false;

 self.client.createDocument(self.collection._self, item, function (err, doc) {

 if (err) {

 callback(err);

 } else {

 callback(null, doc);

 }

 });

 },

 updateItem: function (itemId, callback) {

 var self = this;

 self.getItem(itemId, function (err, doc) {

 if (err) {

 callback(err);

 } else {

 doc.completed = true;

 self.client.replaceDocument(doc._self, doc, function (err, replaced) {

 if (err) {

 callback(err);

 } else {

 callback(null, replaced);

 }

 });

 }

 });

 },

 getItem: function (itemId, callback) {

 var self = this;

 var querySpec = {

 query: 'SELECT * FROM root r WHERE r.id = @id',

 parameters: [{

 name: '@id',

 value: itemId

 }]

 };

 self.client.queryDocuments(self.collection._self, querySpec).toArray(function (err, results) {

 if (err) {

 callback(err);

 } else {

 callback(null, results[0]);

 }

 });

 }

 };

9. Save and close the taskDao.jstaskDao.js file.

Create the controller

1. In the routesroutes directory of your project, create a new file named tasklist.jstasklist.js .

 var DocumentDBClient = require('documentdb').DocumentClient;

 var async = require('async');

 function TaskList(taskDao) {

 this.taskDao = taskDao;

 }

 module.exports = TaskList;

2. Add the following code to tasklist.jstasklist.js . This loads the DocumentDBClient and async modules, which are used

by tasklist.jstasklist.js . This also defined the TaskL istTaskL ist function, which is passed an instance of the TaskTask object we

defined earlier:

3. Continue adding to the tasklist.jstasklist.js file by adding the methods used to showTasks , addTaskshowTasks , addTask , and

completeTaskscompleteTasks :

Add config.js

 TaskList.prototype = {

 showTasks: function (req, res) {

 var self = this;

 var querySpec = {

 query: 'SELECT * FROM root r WHERE r.completed=@completed',

 parameters: [{

 name: '@completed',

 value: false

 }]

 };

 self.taskDao.find(querySpec, function (err, items) {

 if (err) {

 throw (err);

 }

 res.render('index', {

 title: 'My ToDo List ',

 tasks: items

 });

 });

 },

 addTask: function (req, res) {

 var self = this;

 var item = req.body;

 self.taskDao.addItem(item, function (err) {

 if (err) {

 throw (err);

 }

 res.redirect('/');

 });

 },

 completeTask: function (req, res) {

 var self = this;

 var completedTasks = Object.keys(req.body);

 async.forEach(completedTasks, function taskIterator(completedTask, callback) {

 self.taskDao.updateItem(completedTask, function (err) {

 if (err) {

 callback(err);

 } else {

 callback(null);

 }

 });

 }, function goHome(err) {

 if (err) {

 throw err;

 } else {

 res.redirect('/');

 }

 });

 }

 };

4. Save and close the tasklist.jstasklist.js file.

1. In your project directory create a new file named config.jsconfig.js .

2. Add the following to config.jsconfig.js . This defines configuration settings and values needed for our application.

Modify app.js

Step 5: Build a user interface

 var config = {}

 config.host = process.env.HOST || "[the URI value from the DocumentDB Keys blade on

http://portal.azure.com]";

 config.authKey = process.env.AUTH_KEY || "[the PRIMARY KEY value from the DocumentDB Keys blade on

http://portal.azure.com]";

 config.databaseId = "ToDoList";

 config.collectionId = "Items";

 module.exports = config;

3. In the config.jsconfig.js file, update the values of HOST and AUTH_KEY using the values found in the Keys blade of

your DocumentDB account on the Microsoft Azure Portal:

4. Save and close the config.jsconfig.js file.

1. In the project directory, open the app.jsapp.js file. This file was created earlier when the Express web application was

created.

 var DocumentDBClient = require('documentdb').DocumentClient;

 var config = require('./config');

 var TaskList = require('./routes/tasklist');

 var TaskDao = require('./models/taskDao');

3. This code defines the config file to be used, and proceeds to read values out of this file in to some variables we

will use soon.

 app.use('/', routes);

 app.use('/users', users);

 var docDbClient = new DocumentDBClient(config.host, {

 masterKey: config.authKey

 });

 var taskDao = new TaskDao(docDbClient, config.databaseId, config.collectionId);

 var taskList = new TaskList(taskDao);

 taskDao.init();

 app.get('/', taskList.showTasks.bind(taskList));

 app.post('/addtask', taskList.addTask.bind(taskList));

 app.post('/completetask', taskList.completeTask.bind(taskList));

 app.set('view engine', 'jade');

5. These lines define a new instance of our TaskDaoTaskDao object, with a new connection to DocumentDB (using the

values read from the config.jsconfig.js), initialize the task object and then bind form actions to methods on our

TaskL istTaskL ist controller.

6. Finally, save and close the app.jsapp.js file, we're just about done.

2. Add the following code to the top of app.jsapp.js

4. Replace the following two lines in app.jsapp.js file:

with the following snippet:

Now let’s turn our attention to building the user interface so a user can actually interact with our application. The

Express application we created uses JadeJade as the view engine. For more information on Jade please refer to

http://jade-lang.com/.

https://portal.azure.com
http://jade-lang.com/
http://jade-lang.com/

1. The layout.jadelayout.jade file in the v iewsv iews directory is used as a global template for other .jade.jade files. In this step you

will modify it to use Twitter Bootstrap, which is a toolkit that makes it easy to design a nice looking website.

 doctype html

 html

 head

 title= title

 link(rel='stylesheet', href='//ajax.aspnetcdn.com/ajax/bootstrap/3.3.2/css/bootstrap.min.css')

 link(rel='stylesheet', href='/stylesheets/style.css')

 body

 nav.navbar.navbar-inverse.navbar-fixed-top

 div.navbar-header

 a.navbar-brand(href='#') My Tasks

 block content

 script(src='//ajax.aspnetcdn.com/ajax/jQuery/jquery-1.11.2.min.js')

 script(src='//ajax.aspnetcdn.com/ajax/bootstrap/3.3.2/bootstrap.min.js')

 extends layout

 block content

 h1 #{title}

 br

 form(action="/completetask", method="post")

 table.table.table-striped.table-bordered

 tr

 td Name

 td Category

 td Date

 td Complete

 if (typeof tasks === "undefined")

 tr

 td

 else

 each task in tasks

 tr

 td #{task.name}

 td #{task.category}

 - var date = new Date(task.date);

 - var day = date.getDate();

 - var month = date.getMonth() + 1;

 - var year = date.getFullYear();

 td #{month + "/" + day + "/" + year}

 td

 input(type="checkbox", name="#{task.id}", value="#{!task.completed}",

checked=task.completed)

 button.btn(type="submit") Update tasks

 hr

 form.well(action="/addtask", method="post")

 label Item Name:

 input(name="name", type="textbox")

 label Item Category:

 input(name="category", type="textbox")

 br

 button.btn(type="submit") Add item

2. Open the layout.jadelayout.jade file found in the v iewsv iews folder and replace the contents with the following;

This effectively tells the JadeJade engine to render some HTML for our application and creates a blockblock called

contentcontent where we can supply the layout for our content pages. Save and close this layout.jadelayout.jade file.

3. Now open the index.jadeindex.jade file, the view that will be used by our application, and replace the content of the

file with the following:

This extends layout, and provides content for the contentcontent placeholder we saw in the layout.jadelayout.jade file

https://github.com/twbs/bootstrap

 Step 6: Run your application locally

 body {

 padding: 50px;

 font: 14px "Lucida Grande", Helvetica, Arial, sans-serif;

 }

 a {

 color: #00B7FF;

 }

 .well label {

 display: block;

 }

 .well input {

 margin-bottom: 5px;

 }

 .btn {

 margin-top: 5px;

 border: outset 1px #C8C8C8;

 }

earlier.

In this layout we created two HTML forms. The first form contains a table for our data and a button that

allows us to update items by posting to /completetask/completetask method of our controller. The second form

contains two input fields and a button that allows us to create a new item by posting to /addtask/addtask method

of our controller.

This should be all that we need for our application to work.

4. Open the sty le.csssty le.css file in public\sty lesheetspublic\sty lesheets directory and replace the code with the following:

Save and close this sty le.csssty le.css file.

2. Use the provided fields for Item, Item Name and Category to enter information, and then click Add ItemAdd Item .

1. To test the application on your local machine, run npm start in a terminal to start your application, and

launch a browser with a page that looks like the image below:

3. The page should update to display the newly created item in the ToDo list.

Step 7: Deploy your application development project to Azure
Websites

Next steps

4. To complete a task, simply check the checkbox in the Complete column, and then click Update tasksUpdate tasks .

1. If you haven't already, enable a git repository for your Azure Website. You can find instructions on how to do

this in the Local Git Deployment to Azure App Service topic.

 git remote add azure https://username@your-azure-website.scm.azurewebsites.net:443/your-azure-

website.git

 git push azure master

4. In a few seconds, git will finish publishing your web application and launch a browser where you can see your

handy work running in Azure!

2. Add your Azure Website as a git remote.

3. Deploy by pushing to the remote.

Congratulations! You have just built your first Node.js Express Web Application using Azure DocumentDB and

published it to Azure Websites.

The source code for the complete reference application can be downloaded from GitHub.

For more information, see the Node.js Developer Center.

file:///D:/azure-docs-pr/_site/azure/.tmp/app-service-web/app-service-deploy-local-git.html
https://github.com/Azure-Samples/documentdb-node-todo-app
https://azure.microsoft.com/develop/nodejs/

Denny Lee • mimig • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • Andrew Liu • Andrew Hoh • v-aljenk

• Dene Hager

Build a Java web application using DocumentDB
11/22/2016 • 18 min to read • Edit on GitHub

Contributors

TIP

Prerequisites for this Java web application tutorial

This Java web application tutorial shows you how to use the Microsoft Azure DocumentDB service to store and

access data from a Java application hosted on Azure Websites. In this topic, you will learn:

How to build a basic JSP application in Eclipse.

How to work with the Azure DocumentDB service using the DocumentDB Java SDK.

This Java application tutorial shows you how to create a web-based task-management application that enables

you to create, retrieve, and mark tasks as complete, as shown in the following image. Each of the tasks in the ToDo

list are stored as JSON documents in Azure DocumentDB.

This application development tutorial assumes that you have prior experience using Java. If you are new to Java or the

prerequisite tools, we recommend downloading the complete todo project from GitHub and building it using the

instructions at the end of this article. Once you have it built, you can review the article to gain insight on the code in the

context of the project.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-java-application.md
https://github.com/dennyglee
https://github.com/mimig1
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/aliuy
https://github.com/AndrewHoh
https://github.com/v-aljenk
https://github.com/deneha
https://portal.azure.com/#gallery/Microsoft.DocumentDB
https://github.com/Azure/azure-documentdb-java
https://github.com/Azure-Samples/documentdb-java-todo-app

 Step 1: Create a DocumentDB database account

Before you begin this application development tutorial, you must have the following:

Java Development Kit (JDK) 7+.

Eclipse IDE for Java EE Developers.

An Azure Website with a Java runtime environment (e.g. Tomcat or Jetty) enabled.

An active Azure account. If you don't have an account, you can create a free trial account in just a couple of

minutes. For details, see Azure Free Trial

OR

A local installation of the Azure DocumentDB Emulator.

If you're installing these tools for the first time, coreservlets.com provides a walk-through of the installation

process in the Quick Start section of their Tutorial: Installing TomCat7 and Using it with Eclipse article.

Let's start by creating a DocumentDB account. If you already have an account or if you are using the DocumentDB

Emulator for this tutorial, you can skip to Step 2: Create the Java JSP application.

1. Sign in to the Azure portal.

2. In the Jumpbar, click NewNew , click DatabasesDatabases , and then click NoSQL (DocumentDB)NoSQL (DocumentDB) .

3. In the New accountNew account blade, specify the desired configuration for the DocumentDB account.

https://azure.microsoft.com/pricing/free-trial/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/lunasr1
file:///D:/azure-docs-pr/_site/azure/.tmp/app-service-web/web-sites-java-get-started.html
http://www.coreservlets.com/Apache-Tomcat-Tutorial/tomcat-7-with-eclipse.html
https://portal.azure.com/

In the IDID box, enter a name to identify the DocumentDB account. When the IDID is validated, a green check

mark appears in the IDID box. The IDID value becomes the host name within the URI. The IDID may contain

only lowercase letters, numbers, and the '-' character, and must be between 3 and 50 characters. Note

that documents.azure.com is appended to the endpoint name you choose, the result of which becomes

your DocumentDB account endpoint.

In the NoSQL APINoSQL API box, select DocumentDBDocumentDB.

For Subscr iptionSubscr iption , select the Azure subscription that you want to use for the DocumentDB account. If

your account has only one subscription, that account is selected by default.

In Resource GroupResource Group, select or create a resource group for your DocumentDB account. By default, a new

resource group is created. For more information, see Using the Azure portal to manage your Azure

resources.

Use LocationLocation to specify the geographic location in which to host your DocumentDB account.

4. Once the new DocumentDB account options are configured, click CreateCreate. To check the status of the

deployment, check the Notifications hub.

5. After the DocumentDB account is created, it is ready for use with the default settings. To review the default

settings, click the NoSQL (DocumentDB)NoSQL (DocumentDB) icon on the Jumpbar, click your new account, and then click

Default ConsistencyDefault Consistency in the Resource Menu.

file:///D:/azure-docs-pr/_site/azure/.tmp/azure-portal/resource-group-portal.html

 Step 2: Create the Java JSP application

The default consistency of the DocumentDB account is set to SessionSession . You can adjust the default

consistency by clicking Default ConsistencyDefault Consistency in the resource menu. To learn more about the consistency

levels offered by DocumentDB, see Consistency levels in DocumentDB.

Now navigate to the DocumentDB account blade, and click KeysKeys , as we will use these values in the web

application we create next.

To create the JSP application:

1. First, we’ll start off by creating a Java project. Start Eclipse, then click F i leF ile , click NewNew , and then click

Dynamic Web ProjectDynamic Web Project. If you don’t see Dynamic Web ProjectDynamic Web Project listed as an available project, do the

following: click F i leF ile , click NewNew , click ProjectProject…, expand WebWeb, click Dynamic Web ProjectDynamic Web Project, and click NextNext.

2. Enter a project name in the Project nameProject name box, and in the Target RuntimeTarget Runtime drop-down menu, optionally

select a value (e.g. Apache Tomcat v7.0), and then click F inishFinish . Selecting a target runtime enables you to run

your project locally through Eclipse.

3. In Eclipse, in the Project Explorer view, expand your project. Right-click WebContentWebContent, click NewNew , and then click

JSP F ileJSP F ile .

4. In the New JSP F ileNew JSP F ile dialog box, name the file index.jspindex.jsp. Keep the parent folder as WebContentWebContent, as shown

in the following illustration, and then click NextNext.

 Step 3: Install the DocumentDB Java SDK

5. In the Select JSP TemplateSelect JSP Template dialog box, for the purpose of this tutorial select New JSP F ile (html)New JSP F ile (html) , and then

click F inishFinish .

 <body>

 <% out.println("Hello World!"); %>

 </body>

7. Save the index.jsp file.

6. When the index.jsp file opens in Eclipse, add text to display Hello Wor ld!Hello Wor ld! within the existing element. Your

updated content should look like the following code:

8. If you set a target runtime in step 2, you can click ProjectProject and then RunRun to run your JSP application locally:

The easiest way to pull in the DocumentDB Java SDK and its dependencies is through Apache Maven.

To do this, you will need to convert your project to a maven project by completing the following steps:

1. Right-click your project in the Project Explorer, click ConfigureConfigure, click Convert to Maven ProjectConvert to Maven Project.

2. In the Create new POMCreate new POM window, accept the defaults and click F inishFinish .

3. In Project ExplorerProject Explorer , open the pom.xml file.

4. On the DependenciesDependencies tab, in the DependenciesDependencies pane, click AddAdd.

5. In the Select DependencySelect Dependency window, do the following:

In the GroupIdGroupId box, enter com.microsoft.azure.

In the Artifact IdArtifact Id box enter azure-documentdb.

In the Vers ionVersion box enter 1.5.1.

http://maven.apache.org/

 Step 4: Using the DocumentDB service in a Java application

6. Click OkOk and Maven will install the DocumentDB Java SDK.

7. Save the pom.xml file.

com.microsoft.azure azure-documentdb 1.9.1

Or add the dependency XML for GroupId and ArtifactId directly to the pom.xml via a text editor:

 @Data

 @Builder

 public class TodoItem {

 private String category;

 private boolean complete;

 private String id;

 private String name;

 }

 private static final String HOST = "[YOUR_ENDPOINT_HERE]";

 private static final String MASTER_KEY = "[YOUR_KEY_HERE]";

 private static DocumentClient documentClient = new DocumentClient(HOST, MASTER_KEY,

 ConnectionPolicy.GetDefault(), ConsistencyLevel.Session);

 public static DocumentClient getDocumentClient() {

 return documentClient;

 }

1. First, let's define the TodoItem object:

In this project, we are using Project Lombok to generate the constructor, getters, setters, and a builder.

Alternatively, you can write this code manually or have the IDE generate it.

2. To invoke the DocumentDB service, you must instantiate a new DocumentClientDocumentClient. In general, it is best to

reuse the DocumentClientDocumentClient - rather than construct a new client for each subsequent request. We can reuse

the client by wrapping the client in a DocumentClientFactoryDocumentClientFactory . This is also where you need to paste the

URI and PRIMARY KEY value you saved to your clipboard in step 1. Replace [YOUR_ENDPOINT_HERE] with

your URI and replace [YOUR_KEY_HERE] with your PRIMARY KEY.

3. Now let's create a Data Access Object (DAO) to abstract persisting our ToDo items to DocumentDB.

In order to save ToDo items to a collection, the client needs to know which database and collection to

http://projectlombok.org/

 public class DocDbDao implements TodoDao {

 // The name of our database.

 private static final String DATABASE_ID = "TodoDB";

 // The name of our collection.

 private static final String COLLECTION_ID = "TodoCollection";

 // The DocumentDB Client

 private static DocumentClient documentClient = DocumentClientFactory

 .getDocumentClient();

 // Cache for the database object, so we don't have to query for it to

 // retrieve self links.

 private static Database databaseCache;

 // Cache for the collection object, so we don't have to query for it to

 // retrieve self links.

 private static DocumentCollection collectionCache;

 private Database getTodoDatabase() {

 if (databaseCache == null) {

 // Get the database if it exists

 List<Database> databaseList = documentClient

 .queryDatabases(

 "SELECT * FROM root r WHERE r.id='" + DATABASE_ID

 + "'", null).getQueryIterable().toList();

 if (databaseList.size() > 0) {

 // Cache the database object so we won't have to query for it

 // later to retrieve the selfLink.

 databaseCache = databaseList.get(0);

 } else {

 // Create the database if it doesn't exist.

 try {

 Database databaseDefinition = new Database();

 databaseDefinition.setId(DATABASE_ID);

 databaseCache = documentClient.createDatabase(

 databaseDefinition, null).getResource();

 } catch (DocumentClientException e) {

 // TODO: Something has gone terribly wrong - the app wasn't

 // able to query or create the collection.

 // Verify your connection, endpoint, and key.

 e.printStackTrace();

 }

 }

 }

 return databaseCache;

 }

 private DocumentCollection getTodoCollection() {

 if (collectionCache == null) {

 // Get the collection if it exists.

 List<DocumentCollection> collectionList = documentClient

 .queryCollections(

 getTodoDatabase().getSelfLink(),

 "SELECT * FROM root r WHERE r.id='" + COLLECTION_ID

 + "'", null).getQueryIterable().toList();

 if (collectionList.size() > 0) {

 // Cache the collection object so we won't have to query for it

persist to (as referenced by self-links). In general, it is best to cache the database and collection when

possible to avoid additional round-trips to the database.

The following code illustrates how to retrieve our database and collection, if it exists, or create a new one if

it doesn't exist:

 // Cache the collection object so we won't have to query for it

 // later to retrieve the selfLink.

 collectionCache = collectionList.get(0);

 } else {

 // Create the collection if it doesn't exist.

 try {

 DocumentCollection collectionDefinition = new DocumentCollection();

 collectionDefinition.setId(COLLECTION_ID);

 collectionCache = documentClient.createCollection(

 getTodoDatabase().getSelfLink(),

 collectionDefinition, null).getResource();

 } catch (DocumentClientException e) {

 // TODO: Something has gone terribly wrong - the app wasn't

 // able to query or create the collection.

 // Verify your connection, endpoint, and key.

 e.printStackTrace();

 }

 }

 }

 return collectionCache;

 }

 }

 // We'll use Gson for POJO <=> JSON serialization for this example.

 private static Gson gson = new Gson();

 @Override

 public TodoItem createTodoItem(TodoItem todoItem) {

 // Serialize the TodoItem as a JSON Document.

 Document todoItemDocument = new Document(gson.toJson(todoItem));

 // Annotate the document as a TodoItem for retrieval (so that we can

 // store multiple entity types in the collection).

 todoItemDocument.set("entityType", "todoItem");

 try {

 // Persist the document using the DocumentClient.

 todoItemDocument = documentClient.createDocument(

 getTodoCollection().getSelfLink(), todoItemDocument, null,

 false).getResource();

 } catch (DocumentClientException e) {

 e.printStackTrace();

 return null;

 }

 return gson.fromJson(todoItemDocument.toString(), TodoItem.class);

 }

4. The next step is to write some code to persist the TodoItems in to the collection. In this example, we will use

Gson to serialize and de-serialize TodoItem Plain Old Java Objects (POJOs) to JSON documents. Jackson or

your own custom serializer are also great alternatives for serializing POJOs.

5. Like DocumentDB databases and collections, documents are also referenced by self-links. The following

helper function lets us retrieve documents by another attribute (e.g. "id") rather than self-link:

https://code.google.com/p/google-gson/
http://jackson.codehaus.org/

 private Document getDocumentById(String id) {

 // Retrieve the document using the DocumentClient.

 List<Document> documentList = documentClient

 .queryDocuments(getTodoCollection().getSelfLink(),

 "SELECT * FROM root r WHERE r.id='" + id + "'", null)

 .getQueryIterable().toList();

 if (documentList.size() > 0) {

 return documentList.get(0);

 } else {

 return null;

 }

 }

 @Override

 public TodoItem readTodoItem(String id) {

 // Retrieve the document by id using our helper method.

 Document todoItemDocument = getDocumentById(id);

 if (todoItemDocument != null) {

 // De-serialize the document in to a TodoItem.

 return gson.fromJson(todoItemDocument.toString(), TodoItem.class);

 } else {

 return null;

 }

 }

 @Override

 public List<TodoItem> readTodoItems() {

 List<TodoItem> todoItems = new ArrayList<TodoItem>();

 // Retrieve the TodoItem documents

 List<Document> documentList = documentClient

 .queryDocuments(getTodoCollection().getSelfLink(),

 "SELECT * FROM root r WHERE r.entityType = 'todoItem'",

 null).getQueryIterable().toList();

 // De-serialize the documents in to TodoItems.

 for (Document todoItemDocument : documentList) {

 todoItems.add(gson.fromJson(todoItemDocument.toString(),

 TodoItem.class));

 }

 return todoItems;

 }

6. We can use the helper method in step 5 to retrieve a TodoItem JSON document by id and then deserialize it

to a POJO:

7. We can also use the DocumentClient to get a collection or list of TodoItems using DocumentDB SQL:

8. There are many ways to update a document with the DocumentClient. In our Todo list application, we want

to be able to toggle whether a TodoItem is complete. This can be achieved by updating the "complete"

attribute within the document:

 Step 5: Wiring the rest of the of Java application development project
together

 @Override

 public TodoItem updateTodoItem(String id, boolean isComplete) {

 // Retrieve the document from the database

 Document todoItemDocument = getDocumentById(id);

 // You can update the document as a JSON document directly.

 // For more complex operations - you could de-serialize the document in

 // to a POJO, update the POJO, and then re-serialize the POJO back in to

 // a document.

 todoItemDocument.set("complete", isComplete);

 try {

 // Persist/replace the updated document.

 todoItemDocument = documentClient.replaceDocument(todoItemDocument,

 null).getResource();

 } catch (DocumentClientException e) {

 e.printStackTrace();

 return null;

 }

 return gson.fromJson(todoItemDocument.toString(), TodoItem.class);

 }

 @Override

 public boolean deleteTodoItem(String id) {

 // DocumentDB refers to documents by self link rather than id.

 // Query for the document to retrieve the self link.

 Document todoItemDocument = getDocumentById(id);

 try {

 // Delete the document by self link.

 documentClient.deleteDocument(todoItemDocument.getSelfLink(), null);

 } catch (DocumentClientException e) {

 e.printStackTrace();

 return false;

 }

 return true;

 }

9. Finally, we want the ability to delete a TodoItem from our list. To do this, we can use the helper method we

wrote earlier to retrieve the self-link and then tell the client to delete it:

Now that we've finished the fun bits - all that left is to build a quick user interface and wire it up to our DAO.

1. First, let's start with building a controller to call our DAO:

 public class TodoItemController {

 public static TodoItemController getInstance() {

 if (todoItemController == null) {

 todoItemController = new TodoItemController(TodoDaoFactory.getDao());

 }

 return todoItemController;

 }

 private static TodoItemController todoItemController;

 private final TodoDao todoDao;

 TodoItemController(TodoDao todoDao) {

 this.todoDao = todoDao;

 }

 public TodoItem createTodoItem(@NonNull String name,

 @NonNull String category, boolean isComplete) {

 TodoItem todoItem = TodoItem.builder().name(name).category(category)

 .complete(isComplete).build();

 return todoDao.createTodoItem(todoItem);

 }

 public boolean deleteTodoItem(@NonNull String id) {

 return todoDao.deleteTodoItem(id);

 }

 public TodoItem getTodoItemById(@NonNull String id) {

 return todoDao.readTodoItem(id);

 }

 public List<TodoItem> getTodoItems() {

 return todoDao.readTodoItems();

 }

 public TodoItem updateTodoItem(@NonNull String id, boolean isComplete) {

 return todoDao.updateTodoItem(id, isComplete);

 }

 }

In a more complex application, the controller may house complicated business logic on top of the DAO.

2. Next, we'll create a servlet to route HTTP requests to the controller:

 public class TodoServlet extends HttpServlet {

 // API Keys

 public static final String API_METHOD = "method";

 // API Methods

 public static final String CREATE_TODO_ITEM = "createTodoItem";

 public static final String GET_TODO_ITEMS = "getTodoItems";

 public static final String UPDATE_TODO_ITEM = "updateTodoItem";

 // API Parameters

 public static final String TODO_ITEM_ID = "todoItemId";

 public static final String TODO_ITEM_NAME = "todoItemName";

 public static final String TODO_ITEM_CATEGORY = "todoItemCategory";

 public static final String TODO_ITEM_COMPLETE = "todoItemComplete";

 public static final String MESSAGE_ERROR_INVALID_METHOD = "{'error': 'Invalid method'}";

 private static final long serialVersionUID = 1L;

 private static final Gson gson = new Gson();

 @Override

 protected void doGet(HttpServletRequest request,

 HttpServletResponse response) throws ServletException, IOException {

 String apiResponse = MESSAGE_ERROR_INVALID_METHOD;

 TodoItemController todoItemController = TodoItemController

 .getInstance();

 String id = request.getParameter(TODO_ITEM_ID);

 String name = request.getParameter(TODO_ITEM_NAME);

 String category = request.getParameter(TODO_ITEM_CATEGORY);

 boolean isComplete = StringUtils.equalsIgnoreCase("true",

 request.getParameter(TODO_ITEM_COMPLETE)) ? true : false;

 switch (request.getParameter(API_METHOD)) {

 case CREATE_TODO_ITEM:

 apiResponse = gson.toJson(todoItemController.createTodoItem(name,

 category, isComplete));

 break;

 case GET_TODO_ITEMS:

 apiResponse = gson.toJson(todoItemController.getTodoItems());

 break;

 case UPDATE_TODO_ITEM:

 apiResponse = gson.toJson(todoItemController.updateTodoItem(id,

 isComplete));

 break;

 default:

 break;

 }

 response.getWriter().println(apiResponse);

 }

 @Override

 protected void doPost(HttpServletRequest request,

 HttpServletResponse response) throws ServletException, IOException {

 doGet(request, response);

 }

 }

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

 <meta http-equiv="X-UA-Compatible" content="IE=edge;" />

3. We'll need a Web User Interface to display to the user. Let's re-write the index.jsp we created earlier:

 <meta http-equiv="X-UA-Compatible" content="IE=edge;" />

 <title>Azure DocumentDB Java Sample</title>

 <!-- Bootstrap -->

 <link href="//ajax.aspnetcdn.com/ajax/bootstrap/3.2.0/css/bootstrap.min.css" rel="stylesheet">

 <style>

 /* Add padding to body for fixed nav bar */

 body {

 padding-top: 50px;

 }

 </style>

 </head>

 <body>

 <!-- Nav Bar -->

 <div class="navbar navbar-inverse navbar-fixed-top" role="navigation">

 <div class="container">

 <div class="navbar-header">

 My Tasks

 </div>

 </div>

 </div>

 <!-- Body -->

 <div class="container">

 <h1>My ToDo List</h1>

 <hr/>

 <!-- The ToDo List -->

 <div class = "todoList">

 <table class="table table-bordered table-striped" id="todoItems">

 <thead>

 <tr>

 <th>Name</th>

 <th>Category</th>

 <th>Complete</th>

 </tr>

 </thead>

 <tbody>

 </tbody>

 </table>

 <!-- Update Button -->

 <div class="todoUpdatePanel">

 <form class="form-horizontal" role="form">

 <button type="button" class="btn btn-primary">Update Tasks</button>

 </form>

 </div>

 </div>

 <hr/>

 <!-- Item Input Form -->

 <div class="todoForm">

 <form class="form-horizontal" role="form">

 <div class="form-group">

 <label for="inputItemName" class="col-sm-2">Task Name</label>

 <div class="col-sm-10">

 <input type="text" class="form-control" id="inputItemName" placeholder="Enter name">

 </div>

 </div>

 <div class="form-group">

 <label for="inputItemCategory" class="col-sm-2">Task Category</label>

 <div class="col-sm-10">

 <input type="text" class="form-control" id="inputItemCategory" placeholder="Enter category">

 </div>

 </div>

 </div>

 <button type="button" class="btn btn-primary">Add Task</button>

 </form>

 </div>

 </div>

 <!-- Placed at the end of the document so the pages load faster -->

 <script src="//ajax.aspnetcdn.com/ajax/jQuery/jquery-2.1.1.min.js"></script>

 <script src="//ajax.aspnetcdn.com/ajax/bootstrap/3.2.0/bootstrap.min.js"></script>

 <script src="assets/todo.js"></script>

 </body>

 </html>

 var todoApp = {

 /*

 * API methods to call Java backend.

 */

 apiEndpoint: "api",

 createTodoItem: function(name, category, isComplete) {

 $.post(todoApp.apiEndpoint, {

 "method": "createTodoItem",

 "todoItemName": name,

 "todoItemCategory": category,

 "todoItemComplete": isComplete

 },

 function(data) {

 var todoItem = data;

 todoApp.addTodoItemToTable(todoItem.id, todoItem.name, todoItem.category, todoItem.complete);

 },

 "json");

 },

 getTodoItems: function() {

 $.post(todoApp.apiEndpoint, {

 "method": "getTodoItems"

 },

 function(data) {

 var todoItemArr = data;

 $.each(todoItemArr, function(index, value) {

 todoApp.addTodoItemToTable(value.id, value.name, value.category, value.complete);

 });

 },

 "json");

 },

 updateTodoItem: function(id, isComplete) {

 $.post(todoApp.apiEndpoint, {

 "method": "updateTodoItem",

 "todoItemId": id,

 "todoItemComplete": isComplete

 },

 function(data) {},

 "json");

 },

 /*

 * UI Methods

 */

 addTodoItemToTable: function(id, name, category, isComplete) {

 var rowColor = isComplete ? "active" : "warning";

 todoApp.ui_table().append($("<tr>")

 .append($("<td>").text(name))

 .append($("<td>").text(category))

4. And finally, write some client-side Javascript to tie the web user interface and the servlet together:

 .append($("<td>").text(category))

 .append($("<td>")

 .append($("<input>")

 .attr("type", "checkbox")

 .attr("id", id)

 .attr("checked", isComplete)

 .attr("class", "isComplete")

))

 .addClass(rowColor)

);

 },

 /*

 * UI Bindings

 */

 bindCreateButton: function() {

 todoApp.ui_createButton().click(function() {

 todoApp.createTodoItem(todoApp.ui_createNameInput().val(), todoApp.ui_createCategoryInput().val(),

false);

 todoApp.ui_createNameInput().val("");

 todoApp.ui_createCategoryInput().val("");

 });

 },

 bindUpdateButton: function() {

 todoApp.ui_updateButton().click(function() {

 // Disable button temporarily.

 var myButton = $(this);

 var originalText = myButton.text();

 $(this).text("Updating...");

 $(this).prop("disabled", true);

 // Call api to update todo items.

 $.each(todoApp.ui_updateId(), function(index, value) {

 todoApp.updateTodoItem(value.name, value.value);

 $(value).remove();

 });

 // Re-enable button.

 setTimeout(function() {

 myButton.prop("disabled", false);

 myButton.text(originalText);

 }, 500);

 });

 },

 bindUpdateCheckboxes: function() {

 todoApp.ui_table().on("click", ".isComplete", function(event) {

 var checkboxElement = $(event.currentTarget);

 var rowElement = $(event.currentTarget).parents('tr');

 var id = checkboxElement.attr('id');

 var isComplete = checkboxElement.is(':checked');

 // Toggle table row color

 if (isComplete) {

 rowElement.addClass("active");

 rowElement.removeClass("warning");

 } else {

 rowElement.removeClass("active");

 rowElement.addClass("warning");

 }

 // Update hidden inputs for update panel.

 todoApp.ui_updateForm().children("input[name='" + id + "']").remove();

 todoApp.ui_updateForm().append($("<input>")

 .attr("type", "hidden")

 .attr("class", "updateComplete")

 .attr("name", id)

 Step 6: Deploy your Java application to Azure Websites

 .attr("value", isComplete));

 });

 },

 /*

 * UI Elements

 */

 ui_createNameInput: function() {

 return $(".todoForm #inputItemName");

 },

 ui_createCategoryInput: function() {

 return $(".todoForm #inputItemCategory");

 },

 ui_createButton: function() {

 return $(".todoForm button");

 },

 ui_table: function() {

 return $(".todoList table tbody");

 },

 ui_updateButton: function() {

 return $(".todoUpdatePanel button");

 },

 ui_updateForm: function() {

 return $(".todoUpdatePanel form");

 },

 ui_updateId: function() {

 return $(".todoUpdatePanel .updateComplete");

 },

 /*

 * Install the TodoApp

 */

 install: function() {

 todoApp.bindCreateButton();

 todoApp.bindUpdateButton();

 todoApp.bindUpdateCheckboxes();

 todoApp.getTodoItems();

 }

 };

 $(document).ready(function() {

 todoApp.install();

 });

5. Awesome! Now all that's left is to test the application. Run the application locally, and add some Todo items by

filling in the item name and category and clicking Add TaskAdd Task .

6. Once the item appears, you can update whether it's complete by toggling the checkbox and clicking UpdateUpdate

TasksTasks .

Azure Websites makes deploying Java Applications as simple as exporting your application as a WAR file and

either uploading it via source control (e.g. GIT) or FTP.

1. To export your application as a WAR, right-click on your project in Project ExplorerProject Explorer , click ExportExport, and then

click WAR FileWAR File .

2. In the WAR ExportWAR Export window, do the following:

 Get the project from GitHub

4. To view your finished product, navigate to http://YOUR_SITE_NAME.azurewebsites.net/azure-documentdb-

java-sample/ and start adding your tasks!

In the Web project box, enter azure-documentdb-java-sample.

In the Destination box, choose a destination to save the WAR file.

Click F inishFinish .

3. Now that you have a WAR file in hand, you can simply upload it to your Azure Website's webappswebapps

directory. For instructions on uploading the file, see Adding an application to your Java website on Azure.

Once the WAR file is uploaded to the webapps directory, the runtime environment will detect that you've

added it and will automatically load it.

All the samples in this tutorial are included in the todo project on GitHub. To import the todo project into Eclipse,

ensure you have the software and resources listed in the Prerequisites section, then do the following:

1. Install Project Lombok. Lombok is used to generate constructors, getters, setters in the project. Once you have

downloaded the lombok.jar file, double-click it to install it or install it from the command line.

2. If Eclipse is open, close it and restart it to load Lombok.

3. In Eclipse, on the F ileF ile menu, click ImportImport.

4. In the ImportImport window, click GitGit , click Projects from GitProjects from Git , and then click NextNext.

5. On the Select Repository SourceSelect Repository Source screen, click Clone URIClone URI .

6. On the Source Git RepositorySource Git Repository screen, in the UR IURI box, enter https://github.com/Azure-Samples/documentdb-

java-todo-app.git, and then click NextNext.

7. On the Branch SelectionBranch Selection screen, ensure that mastermaster is selected, and then click NextNext.

8. On the Local DestinationLocal Destination screen, click BrowseBrowse to select a folder where the repository can be copied, and then

click NextNext.

9. On the Select a w izard to use for importing projectsSelect a w izard to use for importing projects screen, ensure that Import existing projectsImport existing projects is

selected, and then click NextNext.

10. On the Import ProjectsImport Projects screen, unselect the DocumentDBDocumentDB project, and then click F inishFinish . The DocumentDB

project contains the DocumentDB Java SDK, which we will add as a dependency instead.

11. In Project ExplorerProject Explorer , navigate to azure-documentdb-java-

sample\src\com.microsoft.azure.documentdb.sample.dao\DocumentClientFactory.java and replace the HOST

and MASTER_KEY values with the URI and PRIMARY KEY for your DocumentDB account, and then save the file.

For more information, see Step 1. Create a DocumentDB database account.

12. In Project ExplorerProject Explorer , right click the azure-documentdb-java-sampleazure-documentdb-java-sample, click Build PathBuild Path , and then click

Configure Build PathConfigure Build Path .

13. On the Java Build PathJava Build Path screen, in the right pane, select the L ibrar iesL ibrar ies tab, and then click Add External JARsAdd External JARs .

Navigate to the location of the lombok.jar file, and click OpenOpen , and then click OKOK.

14. Use step 12 to open the PropertiesProperties window again, and then in the left pane click Targeted RuntimesTargeted Runtimes .

15. On the Targeted RuntimesTargeted Runtimes screen, click NewNew , select Apache Tomcat v7 .0Apache Tomcat v7 .0 , and then click OKOK.

16. Use step 12 to open the PropertiesProperties window again, and then in the left pane click Project FacetsProject Facets .

17. On the Project FacetsProject Facets screen, select Dynamic Web ModuleDynamic Web Module and JavaJava , and then click OKOK.

18. On the ServersServers tab at the bottom of the screen, right-click Tomcat v7 .0 Server at localhostTomcat v7 .0 Server at localhost and then click

Add and RemoveAdd and Remove.

19. On the Add and RemoveAdd and Remove window, move azure-documentdb-java-sampleazure-documentdb-java-sample to the ConfiguredConfigured box, and

then click F inishFinish .

20. In the ServerServer tab, right-click Tomcat v7 .0 Server at localhostTomcat v7 .0 Server at localhost, and then click Restar tRestar t .

21. In a browser, navigate to http://localhost:8080/azure-documentdb-java-sample/ and start adding to your task

file:///D:/azure-docs-pr/_site/azure/.tmp/app-service-web/web-sites-java-add-app.html
https://github.com/Azure-Samples/documentdb-java-todo-app
http://projectlombok.org/
https://github.com/Azure-Samples/documentdb-java-todo-app.git
http://localhost:8080/azure-documentdb-java-sample/

list. Note that if you changed your default port values, change 8080 to the value you selected.

22. To deploy your project to an Azure web site, see Step 6. Deploy your application to Azure Websites.

Syam Nair • mimig • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • Andrew Hoh • Andrew Liu • Ryan CrawCour

• Tom Dykstra • Sigrid Elenga

Python Flask Web Application Development with
DocumentDB
11/22/2016 • 12 min to read • Edit on GitHub

Contributors

Database tutorial prerequisites

This tutorial shows you how to use Azure DocumentDB to store and access data from a Python web application

hosted on Azure and presumes that you have some prior experience using Python and Azure websites.

This database tutorial covers:

1. Creating and provisioning a DocumentDB account.

2. Creating a Python MVC application.

3. Connecting to and using Azure DocumentDB from your web application.

4. Deploying the web application to Azure Websites.

By following this tutorial, you will build a simple voting application that allows you to vote for a poll.

Before following the instructions in this article, you should ensure that you have the following installed:

Visual Studio 2013 or higher, or Visual Studio Express(), which is the free version. The instructions in this

tutorial are written specifically for Visual Studio 2015.

Python Tools for Visual Studio from GitHub. This tutorial uses Python Tools for VS 2015.

Azure Python SDK for Visual Studio, version 2.4 or higher available from azure.com. We used Microsoft Azure

An active Azure account. If you don't have an account, you can create a free trial account in just a couple of

minutes. For details, see Azure Free Trial.

OR

A local installation of the Azure DocumentDB Emulator.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-python-application.md
https://github.com/syamkmsft
https://github.com/mimig1
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/AndrewHoh
https://github.com/aliuy
https://github.com/ryancrawcour
https://github.com/tdykstra
https://github.com/S-Elenga
https://azure.microsoft.com/pricing/free-trial/
http://www.visualstudio.com/
http://www.visualstudio.com/products/visual-studio-express-vs.aspx
http://microsoft.github.io/PTVS/
https://azure.microsoft.com/downloads/

IMPORTANT

Step 1: Create a DocumentDB database account

SDK for Python 2.7.

Python 2.7 from python.org. We used Python 2.7.11.

If you are installing Python 2.7 for the first time, ensure that in the Customize Python 2.7.11 screen, you select AddAdd

python.exe to Pathpython.exe to Path.

Microsoft Visual C++ Compiler for Python 2.7 from the Microsoft Download Center.

Let's start by creating a DocumentDB account. If you already have an account or if you are using the DocumentDB

Emulator for this tutorial, you can skip to Step 2: Create a new Python Flask web application.

1. Sign in to the Azure portal.

2. In the Jumpbar, click NewNew , click DatabasesDatabases , and then click NoSQL (DocumentDB)NoSQL (DocumentDB) .

https://www.python.org/downloads/windows/
https://www.microsoft.com/download/details.aspx?id=44266
https://portal.azure.com/

3. In the New accountNew account blade, specify the desired configuration for the DocumentDB account.

In the IDID box, enter a name to identify the DocumentDB account. When the IDID is validated, a green check

mark appears in the IDID box. The IDID value becomes the host name within the URI. The IDID may contain

only lowercase letters, numbers, and the '-' character, and must be between 3 and 50 characters. Note

that documents.azure.com is appended to the endpoint name you choose, the result of which becomes

your DocumentDB account endpoint.

Step 2: Create a new Python Flask web application

In the NoSQL APINoSQL API box, select DocumentDBDocumentDB.

For Subscr iptionSubscr iption , select the Azure subscription that you want to use for the DocumentDB account. If

your account has only one subscription, that account is selected by default.

In Resource GroupResource Group, select or create a resource group for your DocumentDB account. By default, a new

resource group is created. For more information, see Using the Azure portal to manage your Azure

resources.

Use LocationLocation to specify the geographic location in which to host your DocumentDB account.

4. Once the new DocumentDB account options are configured, click CreateCreate. To check the status of the

deployment, check the Notifications hub.

5. After the DocumentDB account is created, it is ready for use with the default settings. To review the default

settings, click the NoSQL (DocumentDB)NoSQL (DocumentDB) icon on the Jumpbar, click your new account, and then click

Default ConsistencyDefault Consistency in the Resource Menu.

The default consistency of the DocumentDB account is set to SessionSession . You can adjust the default

consistency by clicking Default ConsistencyDefault Consistency in the resource menu. To learn more about the consistency

levels offered by DocumentDB, see Consistency levels in DocumentDB.

We will now walk through how to create a new Python Flask web application from the ground up.

2. In the left pane, expand TemplatesTemplates and then PythonPython , and then click WebWeb.

1. In Visual Studio, on the F ileF ile menu, point to NewNew , and then click ProjectProject.

The New ProjectNew Project dialog box appears.

3. Select F lask F lask Web ProjectWeb Project in the center pane, then in the NameName box type tutor ialtutor ial , and then click OKOK.

file:///D:/azure-docs-pr/_site/azure/.tmp/azure-portal/resource-group-portal.html

Remember that Python package names should be all lowercase, as described in the Style Guide for Python

Code.

For those new to Python Flask, it is a web application development framework that helps you build web

applications in Python faster.

4. In the Python Tools for Visual S tudioPython Tools for Visual S tudio window, click Install into a v ir tual env ironmentInstall into a v ir tual env ironment.

5. In the Add Vir tual Env ironmentAdd Vir tual Env ironment window, you can accept the defaults and use Python 2.7 as the base

environment because PyDocumentDB does not currently support Python 3.x, and then click CreateCreate. This

sets up the required Python virtual environment for your project.

https://www.python.org/dev/peps/pep-0008/#package-and-module-names

Step 3: Modify the Python Flask web application

Add the Python Flask packages to your project

The output window displays

Successfully installed Flask-0.10.1 Jinja2-2.8 MarkupSafe-0.23 Werkzeug-0.11.5 itsdangerous-0.24
'requirements.txt' was installed successfully.

when the environment is successfully installed.

After your project is set up, you'll need to add the required Flask packages to your project, including

pydocumentdb, the Python package for DocumentDB.

 flask==0.9

 flask-mail==0.7.6

 sqlalchemy==0.7.9

 flask-sqlalchemy==0.16

 sqlalchemy-migrate==0.7.2

 flask-whooshalchemy==0.55a

 flask-wtf==0.8.4

 pytz==2013b

 flask-babel==0.8

 flup

 pydocumentdb>=1.0.0

2. Save the requirements .txtrequirements .txt file.

1. In Solution Explorer, open the file named requirements .txtrequirements .txt and replace the contents with the following:

3. In Solution Explorer, right-click envenv and click Install from requirements .txtInstall from requirements .txt .

 Verify the virtual environment

 Successfully installed Babel-2.3.2 Tempita-0.5.2 WTForms-2.1 Whoosh-2.7.4 blinker-1.4 decorator-4.0.9

flask-0.9 flask-babel-0.8 flask-mail-0.7.6 flask-sqlalchemy-0.16 flask-whooshalchemy-0.55a0 flask-wtf-

0.8.4 flup-1.0.2 pydocumentdb-1.6.1 pytz-2013b0 speaklater-1.3 sqlalchemy-0.7.9 sqlalchemy-migrate-0.7.2

NOTE

After successful installation, the output window displays the following:

In rare cases, you might see a failure in the output window. If this happens, check if the error is related to cleanup.

Sometimes the cleanup fails, but the installation will still be successful (scroll up in the output window to verify this).

You can check your installation by Verifying the virtual environment. If the installation failed but the verification is

successful, it's OK to continue.

Let's make sure that everything is installed correctly.

1. Build the solution by pressing Ctr lCtr l+ShiftShift+BB .

2. Once the build succeeds, start the website by pressing F5F5 . This launches the Flask development server and

starts your web browser. You should see the following page.

Create database, collection, and document definitions

from flask.ext.wtf import Form

from wtforms import RadioField

class VoteForm(Form):

 deploy_preference = RadioField('Deployment Preference', choices=[

 ('Web Site', 'Web Site'),

 ('Cloud Service', 'Cloud Service'),

 ('Virtual Machine', 'Virtual Machine')], default='Web Site')

Add the required imports to views.py

Create database, collection, and document

3. Stop debugging the website by pressing ShiftShift+F5F5 in Visual Studio.

Now let's create your voting application by adding new files and updating others.

1. In Solution Explorer, right-click the tutor ialtutor ial project, click AddAdd, and then click New ItemNew Item . Select Empty PythonEmpty Python

FileF ile and name the file forms.pyforms.py .

2. Add the following code to the forms.py file, and then save the file.

1. In Solution Explorer, expand the tutor ialtutor ial folder, and open the v iews.pyv iews.py file.

 from forms import VoteForm

 import config

 import pydocumentdb.document_client as document_client

2. Add the following import statements to the top of the v iews.pyv iews.py file, then save the file. These import

DocumentDB's PythonSDK and the Flask packages.

Still in v iews.pyv iews.py , add the following code to the end of the file. This takes care of creating the database used by

the form. Do not delete any of the existing code in v iews.pyv iews.py . Simply append this to the end.

@app.route('/create')

def create():

 """Renders the contact page."""

 client = document_client.DocumentClient(config.DOCUMENTDB_HOST, {'masterKey': config.DOCUMENTDB_KEY})

 # Attempt to delete the database. This allows this to be used to recreate as well as create

 try:

 db = next((data for data in client.ReadDatabases() if data['id'] == config.DOCUMENTDB_DATABASE))

 client.DeleteDatabase(db['_self'])

 except:

 pass

 # Create database

 db = client.CreateDatabase({ 'id': config.DOCUMENTDB_DATABASE })

 # Create collection

 collection = client.CreateCollection(db['_self'],{ 'id': config.DOCUMENTDB_COLLECTION })

 # Create document

 document = client.CreateDocument(collection['_self'],

 { 'id': config.DOCUMENTDB_DOCUMENT,

 'Web Site': 0,

 'Cloud Service': 0,

 'Virtual Machine': 0,

 'name': config.DOCUMENTDB_DOCUMENT

 })

 return render_template(

 'create.html',

 title='Create Page',

 year=datetime.now().year,

 message='You just created a new database, collection, and document. Your old votes have been deleted')

TIP

Read database, collection, document, and submit form

The CreateCollectionCreateCollection method takes an optional RequestOptionsRequestOptions as the third parameter. This can be used to specify the

Offer Type for the collection. If no offerType value is supplied, then the collection will be created using the default Offer Type.

For more information on DocumentDB Offer Types, see Performance levels in DocumentDB.

Still in v iews.pyv iews.py , add the following code to the end of the file. This takes care of setting up the form, reading

the database, collection, and document. Do not delete any of the existing code in v iews.pyv iews.py . Simply append this

to the end.

@app.route('/vote', methods=['GET', 'POST'])

def vote():

 form = VoteForm()

 replaced_document ={}

 if form.validate_on_submit(): # is user submitted vote

 client = document_client.DocumentClient(config.DOCUMENTDB_HOST, {'masterKey': config.DOCUMENTDB_KEY})

 # Read databases and take first since id should not be duplicated.

 db = next((data for data in client.ReadDatabases() if data['id'] == config.DOCUMENTDB_DATABASE))

 # Read collections and take first since id should not be duplicated.

 coll = next((coll for coll in client.ReadCollections(db['_self']) if coll['id'] ==

config.DOCUMENTDB_COLLECTION))

 # Read documents and take first since id should not be duplicated.

 doc = next((doc for doc in client.ReadDocuments(coll['_self']) if doc['id'] ==

config.DOCUMENTDB_DOCUMENT))

 # Take the data from the deploy_preference and increment our database

 doc[form.deploy_preference.data] = doc[form.deploy_preference.data] + 1

 replaced_document = client.ReplaceDocument(doc['_self'], doc)

 # Create a model to pass to results.html

 class VoteObject:

 choices = dict()

 total_votes = 0

 vote_object = VoteObject()

 vote_object.choices = {

 "Web Site" : doc['Web Site'],

 "Cloud Service" : doc['Cloud Service'],

 "Virtual Machine" : doc['Virtual Machine']

 }

 vote_object.total_votes = sum(vote_object.choices.values())

 return render_template(

 'results.html',

 year=datetime.now().year,

 vote_object = vote_object)

 else :

 return render_template(

 'vote.html',

 title = 'Vote',

 year=datetime.now().year,

 form = form)

Create the HTML files

1. In Solution Explorer, in the tutor ialtutor ial folder, right click the templatestemplates folder, click AddAdd, and then click NewNew

ItemItem .

2. Select HTML PageHTML Page, and then in the name box type create.htmlcreate.html .

3. Repeat steps 1 and 2 to create two additional HTML files: results.html and vote.html.

 {% extends "layout.html" %}

 {% block content %}

 <h2>{{ title }}.</h2>

 <h3>{{ message }}</h3>

 <p>Vote »</p>

 {% endblock %}

4. Add the following code to create.htmlcreate.html in the <body> element. It displays a message stating that we

created a new database, collection, and document.

5. Add the following code to results .htmlresults .html in the <body > element. It displays the results of the poll.

Add a configuration file and change the __init__.py

 {% extends "layout.html" %}

 {% block content %}

 <h2>Results of the vote</h2>

 {% for choice in vote_object.choices %}

 <div class="row">

 <div class="col-sm-5">{{choice}}</div>

 <div class="col-sm-5">

 <div class="progress">

 <div class="progress-bar" role="progressbar" aria-valuenow="

{{vote_object.choices[choice]}}" aria-valuemin="0" aria-valuemax="{{vote_object.total_votes}}"

style="width: {{(vote_object.choices[choice]/vote_object.total_votes)*100}}%;">

 {{vote_object.choices[choice]}}

 </div>

 </div>

 </div>

 </div>

 {% endfor %}

 Vote again?

 {% endblock %}

 {% extends "layout.html" %}

 {% block content %}

 <h2>What is your favorite way to host an application on Azure?</h2>

 <form action="" method="post" name="vote">

 {{form.hidden_tag()}}

 {{form.deploy_preference}}

 <button class="btn btn-primary" type="submit">Vote</button>

 </form>

 {% endblock %}

 {% extends "layout.html" %}

 {% block content %}

 <h2>Python + DocumentDB Voting Application.</h2>

 <h3>This is a sample DocumentDB voting application using PyDocumentDB</h3>

 <p>Create/Clear the Voting Database

»</p>

 <p>Vote »</p>

 {% endblock %}

6. Add the following code to vote.htmlvote.html in the <body > element. It displays the poll and accepts the votes. On

registering the votes, the control is passed over to views.py where we will recognize the vote cast and

append the document accordingly.

7. In the templatestemplates folder, replace the contents of index.htmlindex.html with the following. This serves as the landing

page for your application.

1. In Solution Explorer, right-click the tutor ialtutor ial project, click AddAdd, click New ItemNew Item , select Empty Python F ileEmpty Python F ile , and

then name the file config.pyconfig.py . This config file is required by forms in Flask. You can use it to provide a secret

key as well. This key is not needed for this tutorial though.

2. Add the following code to config.py, you'll need to alter the values of DOCUMENTDB_HOSTDOCUMENTDB_HOST and

DOCUMENTDB_KEYDOCUMENTDB_KEY in the next step.

Step 4: Run your web application locally

 CSRF_ENABLED = True

 SECRET_KEY = 'you-will-never-guess'

 DOCUMENTDB_HOST = 'https://YOUR_DOCUMENTDB_NAME.documents.azure.com:443/'

 DOCUMENTDB_KEY = 'YOUR_SECRET_KEY_ENDING_IN_=='

 DOCUMENTDB_DATABASE = 'voting database'

 DOCUMENTDB_COLLECTION = 'voting collection'

 DOCUMENTDB_DOCUMENT = 'voting document'

3. In the Azure portal, navigate to the KeysKeys blade by clicking BrowseBrowse, DocumentDB AccountsDocumentDB Accounts , double-click the

name of the account to use, and then click the KeysKeys button in the EssentialsEssentials area. In the KeysKeys blade, copy the

URIURI value and paste it into the config.pyconfig.py file, as the value for the DOCUMENTDB_HOSTDOCUMENTDB_HOST property.

4. Back in the Azure portal, in the KeysKeys blade, copy the value of the Pr imary KeyPr imary Key or the Secondary KeySecondary Key , and

paste it into the config.pyconfig.py file, as the value for the DOCUMENTDB_KEYDOCUMENTDB_KEY property.

 app.config.from_object('config')

 from flask import Flask

 app = Flask(__name__)

 app.config.from_object('config')

 import tutorial.views

5. In the __ init__ .py__ init__ .py file, add the following line.

So that the content of the file is:

6. After adding all the files, Solution Explorer should look like this:

1. Build the solution by pressing Ctr lCtr l+ShiftShift+BB .

2. Once the build succeeds, start the website by pressing F5F5 . You should see the following on your screen.

https://portal.azure.com/

3. Click Create/Clear the Voting DatabaseCreate/Clear the Voting Database to generate the database.

4. Then, click VoteVote and select your option.

5. For every vote you cast, it increments the appropriate counter.

Step 5: Deploy the web application to Azure Websites

6. Stop debugging the project by pressing Shift+F5.

Now that you have the complete application working correctly against DocumentDB, we're going to deploy this to

Azure Websites.

1. Right-click the project in Solution Explorer (make sure you're not still running it locally) and select PublishPublish .

2. In the Publish WebPublish Web window, select Microsoft Azure Web AppsMicrosoft Azure Web Apps , and then click NextNext.

3. In the Microsoft Azure Web Apps WindowMicrosoft Azure Web Apps Window window, click NewNew .

4. In the Create s ite on Microsoft AzureCreate s ite on Microsoft Azure window, enter a Web app nameWeb app name, App Serv ice planApp Serv ice plan , ResourceResource

groupgroup, and RegionRegion , then click CreateCreate.

Troubleshooting

6. In a few seconds, Visual Studio will finish publishing your web application and launch a browser where you can

see your handy work running in Azure!

5. In the Publish WebPublish Web window, click PublishPublish .

If this is the first Python app you've run on your computer, ensure that the following folders (or the equivalent

installation locations) are included in your PATH variable:

C:\Python27\site-packages;C:\Python27\;C:\Python27\Scripts;

Next steps

If you receive an error on your vote page, and you named your project something other than tutor ialtutor ial , make sure

that __ init__ .py__ init__ .py references the correct project name in the line: import tutorial.view .

Congratulations! You have just completed your first Python web application using Azure DocumentDB and

published it to Azure Websites.

We update and improve this topic frequently based on your feedback. Once you've completed the tutorial, please

using the voting buttons at the top and bottom of this page, and be sure to include your feedback on what

improvements you want to see made. If you'd like us to contact you directly, feel free to include your email

address in your comments.

To add additional functionality to your web application, review the APIs available in the DocumentDB Python SDK.

For more information about Azure, Visual Studio, and Python, see the Python Developer Center.

For additional Python Flask tutorials, see The Flask Mega-Tutorial, Part I: Hello, World!.

https://azure.microsoft.com/develop/python/
http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world

arramac • mimig

Use the Azure DocumentDB Emulator for
development and testing
11/22/2016 • 5 min to read • Edit on GitHub

Contributors

DocumentDB Emulator system requirements

Installing the DocumentDB Emulator

Download the EmulatorDownload the Emulator

The Azure DocumentDB Emulator provides a local environment that emulates the Azure DocumentDB service

for development purposes. Using the DocumentDB Emulator, you can develop and test your application locally,

without creating an Azure subscription or incurring any costs. When you're satisfied with how your application

is working in the DocumentDB Emulator, you can switch to using an Azure DocumentDB account in the cloud.

We recommend getting started by watching the following video, where Kirill Gavrylyuk shows how to get

started with the DocumentDB Emulator.

The DocumentDB Emulator has the following hardware and software requirements:

Software requirements

Minimum Hardware requirements

Windows Server 2012 R2, Windows Server 2016, or Windows 10

2 GB RAM

10 GB available hard disk space

You can download and install the DocumentDB Emulator from the Microsoft Download Center.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-nosql-local-emulator.md
https://github.com/arramac
https://github.com/mimig1
https://aka.ms/documentdb-emulator
https://aka.ms/documentdb-emulator

NOTE

Checking for DocumentDB Emulator updates

NOTE

How the DocumentDB Emulator works

Authenticating requests against the DocumentDB Emulator

Account name: localhost:<port>

Account key: C2y6yDjf5/R+ob0N8A7Cgv30VRDJIWEHLM+4QDU5DE2nQ9nDuVTqobD4b8mGGyPMbIZnqyMsEcaGQy67XIw/Jw==

NOTE

Start and initialize the DocumentDB Emulator

To install, configure, and run the DocumentDB Emulator, you must have administrative privileges on the computer.

The DocumentDB Emulator includes a built-in Azure DocumentDB Data Explorer to browse data stored within

DocumentDB, create new collections, and let you know when a new update is available for download.

Data created in one version of the DocumentDB Emulator is not guaranteed to be accessible when using a different

version. If you need to persist your data for the long term, it is recommended that you store that data in an Azure

DocumentDB account, rather than in the DocumentDB Emulator.

The DocumentDB Emulator provides a high-fidelity emulation of the DocumentDB service. It supports identical

functionality as Azure DocumentDB, including support for creating and querying JSON documents,

provisioning and scaling collections, and executing stored procedures and triggers. You can develop and test

applications using the DocumentDB Emulator, and deploy them to Azure at global scale by just making a single

configuration change to the connection endpoint for DocumentDB.

While we created a high-fidelity local emulation of the actual DocumentDB service, the implementation of the

DocumentDB Emulator is different than that of the service. For example, the DocumentDB Emulator uses

standard OS components such as the local file system for persistence, and HTTPS protocol stack for

connectivity. This means that some functionality that relies on Azure infrastructure like global replication,

single-digit millisecond latency for reads/writes, and tunable consistency levels are not available via the

DocumentDB Emulator.

Just as with Azure Document in the cloud, every request that you make against the DocumentDB Emulator

must be authenticated. The DocumentDB Emulator supports a single fixed account and a well-known

authentication key for master key authentication. This account and key are the only credentials permitted for

use with the DocumentDB Emulator. They are:

The master key supported by the DocumentDB Emulator is intended for use only with the emulator. You cannot use

your production DocumentDB account and key with the DocumentDB Emulator.

Additionally, just as the Azure DocumentDB service, the DocumentDB Emulator supports only secure

communication via SSL.

To start the Azure DocumentDB Emulator, select the Start button or press the Windows key. Begin typing

DocumentDB EmulatorDocumentDB Emulator , and select the emulator from the list of applications.

Developing with the DocumentDB Emulator

// Connect to the DocumentDB Emulator running locally

DocumentClient client = new DocumentClient(

 new Uri("https://localhost:8081"),

 "C2y6yDjf5/R+ob0N8A7Cgv30VRDJIWEHLM+4QDU5DE2nQ9nDuVTqobD4b8mGGyPMbIZnqyMsEcaGQy67XIw/Jw==",

 new ConnectionPolicy { EnableEndpointDiscovery = false });

NOTE

mongodb://localhost:C2y6yDjf5/R+ob0N8A7Cgv30VRDJIWEHLM+4QDU5DE2nQ9nDuVTqobD4b8mGGyPMbIZnqyMsEcaGQy67XIw/Jw==@

localhost:10250/admin?ssl=true&3t.sslSelfSignedCerts=true

DocumentDB Emulator command-line tool reference

When the emulator is running, you'll see an icon in the Windows taskbar notification area. The DocumentDB

Emulator by default runs on the local machine ("localhost") listening on port 8081.

The DocumentDB Emulator is installed by default to the C:\Program Files\Azure DocumentDB Emulator directory.

You can also start and stop the emulator from the command-line. See command-line tool reference for more

information.

Once you have the DocumentDB Emulator running on your desktop, you can use any supported DocumentDB

SDK or the DocumentDB REST API to interact with the Emulator. The DocumentDB Emulator also includes a

built-in Data Explorer that lets you create collections, view and edit documents without writing any code.

When connecting to the emulator, you must set EnableEndpointDiscovery = false in the connection configuration.

If you're using DocumentDB protocol support for MongoDB, please use the following connection string:

You can use existing tools like DocumentDB Studio to connect to the DocumentDB Emulator. You can also

migrate data between the DocumentDB Emulator and the Azure DocumentDB service using the DocumentDB

Data Migration Tool.

From the installation location, you can use the command-line to start and stop the emulator, configure options,

and perform other operations.

https://msdn.microsoft.com/library/azure/dn781481.aspx
https://github.com/mingaliu/DocumentDBStudio
https://github.com/azure/azure-documentdb-datamigrationtool

Command Line Syntax

DocumentDB.LocalEmulator.exe [/shutdown] [/datapath] [/port] [/mongoport] [/directports] [/key] [/?]

OptionOption DescriptionDescription CommandCommand ArgumentsArguments

[No arguments] Starts up the DocumentDB
Emulator with default
settings

DocumentDB.LocalEmulator
.exe

Shutdown Shuts down the
DocumentDB Emulator

DocumentDB.LocalEmulator
.exe /Shutdown

Help Displays the list of
command line arguments

DocumentDB.LocalEmulator
.exe /?

Datapath Specifies the path in which
to store data files

DocumentDB.LocalEmulator
.exe /datapath=
<datapath>

<datapath>: An accessible
path

Port Specifies the port number
to use for the emulator.
Default is 8081

DocumentDB.LocalEmulator
.exe /port=<port>

<port>: Single port number

MongoPort Specifies the port number
to use for MongoDB
compatibility API. Default is
10250

DocumentDB.LocalEmulator
.exe /mongoport=
<mongoport>

<mongoport>: Single port
number

DirectPorts Specifies the ports to use
for direct connectivity.
Defaults are
10251,10252,10253,10254

DocumentDB.LocalEmulator
.exe /directports:
<directports>

<directports>: Comma
delimited list of 4 ports

Key Authorization key for the
emulator. Key must be the
base-64 encoding of a 64-
byte vector

DocumentDB.LocalEmulator
.exe /key:<key>

<key>: Key must be the
base-64 encoding of a 64-
byte vector

EnableThrottling Specifies that request
throttling behavior is
enabled

DocumentDB.LocalEmulator
.exe /enablethrottling

DisableThrottling Specifies that request
throttling behavior is
disabled

DocumentDB.LocalEmulator
.exe /disablethrottling

Differences between the DocumentDB Emulator and Azure
DocumentDB

To view the list of options, type DocumentDB.LocalEmulator.exe /? at the command prompt.

Because the DocumentDB Emulator provides an emulated environment running on a local developer

workstation, there are some differences in functionality between the emulator and an Azure DocumentDB

account in the cloud:

The DocumentDB Emulator supports only a single fixed account and a well-known master key. Key

Next steps

regeneration is not possible in the DocumentDB Emulator.

The DocumentDB Emulator is not a scalable service and will not support a large number of collections.

The DocumentDB Emulator does not simulate different DocumentDB consistency levels.

The DocumentDB Emulator does not simulate multi-region replication.

The DocumentDB Emulator does not support the service quota overrides that are available in the Azure

DocumentDB service (e.g. document size limits, increased partitioned collection storage).

As your copy of the DocumentDB Emulator might not be up to date with the most recent changes with the

Azure DocumentDB service, please DocumentDB capacity planner to accurately estimate production

throughput (RUs) needs of your application.

To learn more about DocumentDB, see Introduction to Azure DocumentDB

To start developing against the DocumentDB Emulator, download one of the supported DocumentDB SDKs.

https://www.documentdb.com/capacityplanner

mimig • Theano Petersen • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • arramac • v-aljenk

Frequently asked questions about DocumentDB
11/22/2016 • 9 min to read • Edit on GitHub

Contributors

Database questions about Microsoft Azure DocumentDB fundamentals

What is Microsoft Azure DocumentDB?

What kind of database is DocumentDB?

Do DocumentDB databases have tables like a relational database (RDBMS)?

Do DocumentDB databases support schema-free data?

Does DocumentDB support ACID transactions?

What are the typical use cases for DocumentDB?

How does DocumentDB offer predictable performance?

Microsoft Azure DocumentDB is a blazing fast, planet-scale NoSQL document database-as-a-service that offers rich

querying over schema-free data, helps deliver configurable and reliable performance, and enables rapid

development, all through a managed platform backed by the power and reach of Microsoft Azure. DocumentDB is

the right solution for web, mobile, gaming and IoT applications when predictable throughput, high availability, low

latency, and a schema-free data model are key requirements. DocumentDB delivers schema flexibility and rich

indexing via a native JSON data model, and includes multi-document transactional support with integrated

JavaScript.

For more database questions, answers, and instructions on deploying and using this service, see the DocumentDB

documentation page.

DocumentDB is a NoSQL document oriented database that stores data in JSON format. DocumentDB supports

nested, self-contained-data structures that can be queried through a rich DocumentDB SQL query grammar.

DocumentDB provides high-performance transactional processing of server-side JavaScript through stored

procedures, triggers, and user defined functions. The database also supports developer tunable consistency levels

with associated performance levels.

No, DocumentDB stores data in collections of JSON documents. For information on DocumentDB resources, see

DocumentDB resource model and concepts. For more information about how NoSQL solutions such as

DocumentDB differ from relational solutions, see NoSQL vs SQL.

Yes, DocumentDB allows applications to store arbitrary JSON documents without schema definition or hints. Data

is immediately available for query through the DocumentDB SQL query interface.

Yes, DocumentDB supports cross-document transactions expressed as JavaScript stored procedures and triggers.

Transactions are scoped to a single partition within each collection and executed with ACID semantics as all or

nothing isolated from other concurrently executing code and user requests. If exceptions are thrown through the

server-side execution of JavaScript application code, the entire transaction is rolled back. For more information

about transactions, see Database program transactions.

DocumentDB is a good choice for new web, mobile, gaming and IoT applications where automatic scale, predictable

performance, fast order of millisecond response times, and the ability to query over schema-free data is important.

DocumentDB lends itself to rapid development and supporting the continuous iteration of application data models.

Applications that manage user generated content and data are common use cases for DocumentDB.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-faq.md
https://github.com/mimig1
https://github.com/v-thepet
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/arramac
https://github.com/v-aljenk
https://azure.microsoft.com/documentation/services/documentdb/

Is DocumentDB HIPAA compliant?

What are the storage limits of DocumentDB?

What are the throughput limits of DocumentDB?

How much does Microsoft Azure DocumentDB cost?

Is there a free account available?

How can I get additional help with DocumentDB?

Set up Microsoft Azure DocumentDB

How do I sign up for Microsoft Azure DocumentDB?

What is a master key?

A request unit is the measure of throughput in DocumentDB. 1 RU corresponds to the throughput of the GET of a

1KB document. Every operation in DocumentDB, including reads, writes, SQL queries, and stored procedure

executions has a deterministic RU value based on the throughput required to complete the operation. Instead of

thinking about CPU, IO and memory and how they each impact your application throughput, you can think in terms

of a single RU measure.

Each DocumentDB collection can be reserved with provisioned throughput in terms of RUs of throughput per

second. For applications of any scale, you can benchmark individual requests to measure their RU values, and

provision collections to handle the sum total of request units across all requests. You can also scale up or scale

down your collection’s throughput as the needs of your application evolve. For more information about request

units and for help determining your collection needs, please read Manage Performance and Capacity and try the

throughput calculator.

Yes, DocumentDB is HIPAA-compliant. HIPAA establishes requirements for the use, disclosure, and safeguarding of

individually identifiable health information. For more information, see the Microsoft Trust Center.

There is no limit to the total amount of data that a collection can store in DocumentDB. If you would like to store

over 250 GB of data within a single collection, please contact support to have your account quota increased.

There is no limit to the total amount of throughput that a collection can support in DocumentDB, if your workload

can be distributed roughly evenly among a sufficiently large number of partition keys. If you wish to exceed

250,000 request units/second per collection or account, please contact support to to have your account quota

increased.

Please refer to the DocumentDB pricing details page for details. DocumentDB usage charges are determined by the

number of collections in use, the number of hours the collections were online, and the consumed storage and

provisioned throughput for each collection.

If you are new to Azure, you can sign up for an Azure free account, which gives you 30 days and $200 to try all the

Azure services. Or, if you have a Visual Studio subscription, you are eligible for $150 in free Azure credits per

month to use on any Azure service.

You can also use the Azure DocumentDB Emulator to develop and test your application locally for free, without

creating an Azure subscription. When you're satisfied with how your application is working in the DocumentDB

Emulator, you can switch to using an Azure DocumentDB account in the cloud.

If you need any help, please reach out to us on Stack Overflow, the Azure DocumentDB MSDN Developer Forums,

or schedule a 1:1 chat with the DocumentDB engineering team. To stay up to date on the latest DocumentDB news

and features, follow us on Twitter.

Microsoft Azure DocumentDB is available in the Azure Portal. First you must sign up for a Microsoft Azure

subscription. Once you sign up for a Microsoft Azure subscription, you can add a DocumentDB account to your

Azure subscription. For instructions on adding a DocumentDB account, see Create a DocumentDB database

account.

https://www.documentdb.com/capacityplanner
https://www.microsoft.com/en-us/TrustCenter/Compliance/HIPAA
https://azure.microsoft.com/pricing/details/documentdb/
https://azure.microsoft.com/free/
https://azure.microsoft.com/pricing/member-offers/msdn-benefits-details/
http://stackoverflow.com/questions/tagged/azure-documentdb
https://social.msdn.microsoft.com/forums/azure/home?forum=AzureDocumentDB
http://www.askdocdb.com/
https://twitter.com/DocumentDB
https://portal.azure.com

How do I create a database?

What is a collection?

How do I set up users and permissions?

Database questions about developing against Microsoft Azure
DocumentDB

How to do I start developing against DocumentDB?

Does DocumentDB support SQL?

What are the data types supported by DocumentDB?

How does DocumentDB provide concurrency?

A master key is a security token to access all resources for an account. Individuals with the key have read and write

access to the all resources in the database account. Use caution when distributing master keys. The primary master

key and secondary master key are available in the **Keys **blade of the Azure Portal. For more information about

keys, see View, copy, and regenerate access keys.

You can create databases using the [Azure Portal]() as described in Create a DocumentDB database, one of the

DocumentDB SDKs, or through the REST APIs.

A collection is a container of JSON documents and the associated JavaScript application logic. A collection is a

billable entity, where the cost is determined by the throughput and storaged used. Collections can span one or

more partitions/servers and can scale to handle practically unlimited volumes of storage or throughput.

Collections are also the billing entities for DocumentDB. Each collection is billed hourly based on the provisioned

throughput and the storage space used. For more information, see DocumentDB pricing.

You can create users and permissions using one of the DocumentDB SDKs or through the REST APIs.

SDKs are available for .NET, Python, Node.js, JavaScript, and Java. Developers can also leverage the RESTful HTTP

APIs to interact with DocumentDB resources from a variety of platforms and languages.

Samples for the DocumentDB .NET, Java, Node.js, and Python SDKs are available on GitHub.

The DocumentDB SQL query language is an enhanced subset of the query functionality supported by SQL. The

DocumentDB SQL query language provides rich hierarchical and relational operators and extensibility via

JavaScript based user-defined functions (UDFs). JSON grammar allows for modeling JSON documents as trees

with labels as the tree nodes, which is used by both the DocumentDB automatic indexing techniques as well as the

SQL query dialect of DocumentDB. For details on how to use the SQL grammar, please see the Query DocumentDB

article.

The primitive data types supported in DocumentDB are the same as JSON. JSON has a simple type system that

consists of Strings, Numbers (IEEE754 double precision), and Booleans - true, false, and Nulls. More complex data

types like DateTime, Guid, Int64, and Geometry can be represented both in JSON and DocumentDB through the

creation of nested objects using the { } operator and arrays using the [] operator.

DocumentDB supports optimistic concurrency control (OCC) through HTTP entity tags or etags. Every DocumentDB

resource has an etag, and the etag is set on the server every time a document is updated. The etag header and the

current value are included in all response messages. Etags can be used with the If-Match header to allow the server

to decide if a resource should be updated. The If-Match value is the etag value to be checked against. If the etag

value matches the server etag value, the resource will be updated. If the etag is no longer current, the server rejects

the operation with an "HTTP 412 Precondition failure" response code. The client will then have to refetch the

resource to acquire the current etag value for the resource. In addition, etags can be used with If-None-Match

header to determine if a re-fetch of a resource is needed.

To use optimistic concurrency in .NET, use the AccessCondition class. For a .NET sample, see Program.cs in the

https://portal.azure.com
file:///D:/azure-docs-pr/_site/azure/.tmp/documentdb/documentdb-create-database.html
https://msdn.microsoft.com/library/azure/dn781481.aspx
https://azure.microsoft.com/pricing/details/documentdb/
https://msdn.microsoft.com/library/azure/dn781481.aspx
https://msdn.microsoft.com/library/azure/dn781481.aspx
https://github.com/Azure/azure-documentdb-java
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.accesscondition.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/code-samples/DocumentManagement/Program.cs

How do I perform transactions in DocumentDB?

How can I bulk insert documents into DocumentDB?

Does DocumentDB support resource link caching?

Is a local instance of DocumentDB available?

DocumentManagement sample on github.

DocumentDB supports language-integrated transactions via JavaScript stored procedures and triggers. All database

operations inside scripts are executed under snapshot isolation scoped to the collection if it is a single-partition

collection, or documents with the same partition key value within a collection, if the collection is partitioned. A

snapshot of the document versions (ETags) is taken at the start of the transaction and committed only if the script

succeeds. If the JavaScript throws an error, the transaction is rolled back. See DocumentDB server-side

programming for more details.

There are three ways to bulk insert documents into DocumentDB:

The data migration tool, as described in Import data to DocumentDB.

Document Explorer in the Azure Portal, as described in Bulk add documents with Document Explorer.

Stored procedures, as described in DocumentDB server-side programming.

Yes, because DocumentDB is a RESTful service, resource links are immutable and can be cached. DocumentDB

clients can specify an "If-None-Match" header for reads against any resource like document or collection and

update their local copies only when the server version has change.

Yes. The Azure DocumentDB Emulator provides a high-fidelity emulation of the DocumentDB service. It supports

identical functionality as Azure DocumentDB, including support for creating and querying JSON documents,

provisioning and scaling collections, and executing stored procedures and triggers. You can develop and test

applications using the DocumentDB Emulator, and deploy them to Azure at global scale by just making a single

configuration change to the connection endpoint for DocumentDB.

Syam Nair • mimig • Theano Petersen • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • arramac • Stephen Baron

• v-aljenk

Storage and predictable performance provisioning in
DocumentDB
11/15/2016 • 8 min to read • Edit on GitHub

Contributors

Database account

Databases

Database collections

Azure DocumentDB is a fully managed, scalable document-oriented NoSQL database service for JSON documents.

With DocumentDB, you don’t have to rent virtual machines, deploy software, or monitor databases. DocumentDB

is operated and continuously monitored by Microsoft engineers to deliver world class availability, performance,

and data protection.

You can get started with DocumentDB by creating a database account and a DocumentDB database through the

Azure portal. DocumentDB databases are offered in units of solid-state drive (SSD) backed storage and

throughput. These storage units are provisioned by creating database collections within your database account,

each collection with reserved throughput that can be scaled up or down at any time to meet the demands of your

application.

If your application exceeds your reserved throughput for one or multiple collections, requests are limited on a per

collection basis. This means that some application requests may succeed while others may be throttled.

This article provides an overview of the resources and metrics available to manage capacity and plan data storage.

As an Azure subscriber, you can provision one or more DocumentDB database accounts to manage your database

resources. Each subscription is associated with a single Azure subscription.

DocumentDB accounts can be created through the Azure portal, or by using an ARM template or Azure CLI.

A single DocumentDB database can contain practically an unlimited amount of document storage grouped into

collections. Collections provide performance isolation - each collection can be provisioned with throughput that is

not shared with other collections in the same database or account. A DocumentDB database is elastic in size,

ranging from GBs to TBs of SSD backed document storage and provisioned throughput. Unlike a traditional

RDBMS database, a database in DocumentDB is not scoped to a single machine and can span multiple machines

or clusters.

With DocumentDB, as you need to scale your applications, you can create more collections or databases or both.

Databases can be created through the Azure portal or through any one of the DocumentDB SDKs.

Each DocumentDB database can contain one or more collections. Collections act as highly available data partitions

for document storage and processing. Each collection can store documents with heterogeneous schema.

DocumentDB's automatic indexing and query capabilities allow you to easily filter and retrieve documents. A

collection provides the scope for document storage and query execution. A collection is also a transaction domain

for all the documents contained within it. Collections are allocated throughput based on the value set in the Azure

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-manage.md
https://github.com/syamkmsft
https://github.com/mimig1
https://github.com/v-thepet
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/arramac
https://github.com/stephbaron
https://github.com/v-aljenk
file:///D:/azure-docs-pr/_site/azure/.tmp/documentdb/documentdb-create-database.html
https://portal.azure.com/
file:///D:/azure-docs-pr/_site/azure/.tmp/documentdb/documentdb-create-database.html

 Request units and database operations

IMPORTANT

NOTE

portal or via the SDKs.

Collections are automatically partitioned into one or more physical servers by DocumentDB. When you create a

collection, you can specify the provisioned throughput in terms of request units per second and a partition key

property. The value of this property is used by DocumentDB to distribute documents among partitions and route

requests like queries. The partition key value also acts as the transaction boundary for stored procedures and

triggers. Each collection has a reserved amount of throughput specific to that collection, which is not shared with

other collections in the same account. Therefore, you can scale out your application both in terms of storage and

throughput.

Collections can be created through the Azure portal or through any one of the DocumentDB SDKs.

When you create a collection, you reserve throughput in terms of request units (RU) per second. Instead of

thinking about and managing hardware resources, you can think of a request unitrequest unit as a single measure for the

resources required to perform various database operations and service an application request. A read of a 1 KB

document consumes the same 1 RU regardless of the number of items stored in the collection or the number of

concurrent requests running at the same. All requests against DocumentDB, including complex operations like

SQL queries have a predictable RU value that can be determined at development time. If you know the size of your

documents and the frequency of each operation (reads, writes and queries) to support for your application, you

can provision the exact amount of throughput to meet your application's needs, and scale your database up and

down as your performance needs change.

Each collection can be reserved with throughput in blocks of 100 request units per second, from hundreds up to

millions of request units per second. The provisioned throughput can be adjusted throughout the life of a

collection to adapt to the changing processing needs and access patterns of your application. For more

information, see DocumentDB performance levels.

Collections are billable entities. The cost is determined by the provisioned throughput of the collection measured in request

units per second along with the total consumed storage in gigabytes.

How many request units will a particular operation like insert, delete, query, or stored procedure execution

consume? A request unit is a normalized measure of request processing cost. A read of a 1 KB document is 1 RU,

but a request to insert, replace or delete the same document will consume more processing from the service and

thereby more request units. Each response from the service includes a custom header (x-ms-request-charge) that

reports the request units consumed for the request. This header is also accessible through the SDKs. In the .NET

SDK, RequestCharge is a property of the ResourceResponse object. If you want to estimate your throughput needs

before making a single call, you can use the capacity planner to help with this estimation.

The baseline of 1 request unit for a 1 KB document corresponds to a simple GET of the document with Session Consistency.

There are several factors that impact the request units consumed for an operation against a DocumentDB

database account. These factors include:

Document size. As document sizes increase the units consumed to read or write the data will also increase.

Property count. Assuming default indexing of all properties, the units consumed to write a document will

increase as the property count increases.

Data consistency. When using data consistency levels of Strong or Bounded Staleness, additional units will be

consumed to read documents.

https://msdn.microsoft.com/library/azure/dn933057.aspx#P:Microsoft.Azure.Documents.Client.ResourceResponse`1.RequestCharge
https://msdn.microsoft.com/library/azure/dn799209.aspx

Choice of consistency level and throughput

Provisioned document storage and index overhead

Indexed properties. An index policy on each collection determines which properties are indexed by default. You

can reduce your request unit consumption by limiting the number of indexed properties.

Document indexing. By default each document is automatically indexed, you will consume fewer request units

if you choose not to index some of your documents.

For more information, see DocumentDB request units.

For example, here's a table that shows how many request units to provision at three different document sizes

(1KB, 4KB, and 64KB) and at two different performance levels (500 reads/second + 100 writes/second and 500

reads/second + 500 writes/second). The data consistency was configured at Session, and the indexing policy was

set to None.

Document sizeDocument size Reads/secondReads/second Writes/secondWrites/second Request unitsRequest units

1 KB 500 100 (500 * 1) + (100 * 5) =
1,000 RU/s

1 KB 500 500 (500 * 5) + (100 * 5) =
3,000 RU/s

4 KB 500 100 (500 * 1.3) + (100 * 7) =
1,350 RU/s

4 KB 500 500 (500 * 1.3) + (500 * 7) =
4,150 RU/s

64 KB 500 100 (500 * 10) + (100 * 48)
= 9,800 RU/s

64 KB 500 500 (500 * 10) + (500 * 48)
= 29,000 RU/s

Queries, stored procedures, and triggers consume request units based on the complexity of the operations being

performed. As you develop your application, inspect the request charge header to better understand how each

operation is consuming request unit capacity.

The choice of default consistency level has an impact on the throughput and latency. You can set the default

consistency level both programmatically and through the Azure portal. You can also override the consistency level

on a per request basis. By default, the consistency level is set to SessionSession , which provides monotonic read/writes

and read your write guarantees. Session consistency is great for user-centric applications and provides an ideal

balance of consistency and performance trade-offs.

For instructions on changing your consistency level on the Azure portal, see How to Manage a DocumentDB

Account. Or, for more information on consistency levels, see Using consistency levels.

DocumentDB supports the creation of both single-partition and partitioned collections. Each partition in

Next steps

DocumentDB supports up to 10 GB of SSD backed storage. The 10GB of document storage includes the

documents plus storage for the index. By default, a DocumentDB collection is configured to automatically index all

of the documents without explicitly requiring any secondary indices or schema. Based on applications using

DocumentDB, the typical index overhead is between 2-20%. The indexing technology used by DocumentDB

ensures that regardless of the values of the properties, the index overhead does not exceed more than 80% of the

size of the documents with default settings.

By default all documents are indexed by DocumentDB automatically. However, if you want to fine-tune the index

overhead, you can choose to remove certain documents from being indexed at the time of inserting or replacing a

document, as described in DocumentDB indexing policies. You can configure a DocumentDB collection to exclude

all documents within the collection from being indexed. You can also configure a DocumentDB collection to

selectively index only certain properties or paths with wildcards of your JSON documents, as described in

Configuring the indexing policy of a collection. Excluding properties or documents also improves the write

throughput – which means you will consume fewer request units.

To continue learning about how DocumentDB works, see Partitioning and scaling in Azure DocumentDB.

For instructions on monitoring performance levels on the Azure portal, see Monitor a DocumentDB account. For

more information on choosing performance levels for collections, see Performance levels in DocumentDB.

arramac • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • mimig • Rajesh Nagpal • Andrew Hoh • jayantacs

• Ross McAllister • John Macintyre

Partitioning and scaling in Azure DocumentDB
11/15/2016 • 16 min to read • Edit on GitHub

Contributors

Partitioning in DocumentDB

Partition keys

Microsoft Azure DocumentDB is designed to help you achieve fast, predictable performance and scale seamlessly

along with your application as it grows. This article provides an overview of how partitioning works in

DocumentDB, and describes how you can configure DocumentDB collections to effectively scale your

applications.

After reading this article, you will be able to answer the following questions:

How does partitioning work in Azure DocumentDB?

How do I configure partitioning in DocumentDB

What are partition keys, and how do I pick the right partition key for my application?

To get started with code, please download the project from DocumentDB Performance Testing Driver Sample.

In DocumentDB, you can store and query schema-less JSON documents with order-of-millisecond response

times at any scale. DocumentDB provides containers for storing data called collectionscollections . Collections are logical

resources and can span one or more physical partitions or servers. The number of partitions is determined by

DocumentDB based on the storage size and the provisioned throughput of the collection. Every partition in

DocumentDB has a fixed amount of SSD-backed storage associated with it, and is replicated for high availability.

Partition management is fully managed by Azure DocumentDB, and you do not have to write complex code or

manage your partitions. DocumentDB collections are practically unlim itedpractically unlim ited in terms of storage and

throughput.

Partitioning is completely transparent to your application. DocumentDB supports fast reads and writes, SQL and

LINQ queries, JavaScript based transactional logic, consistency levels, and fine-grained access control via REST

API calls to a single collection resource. The service handles distributing data across partitions and routing query

requests to the right partition.

How does this work? When you create a collection in DocumentDB, you'll notice that there's a partition keypartition key

propertyproperty configuration value that you can specify. This is the JSON property (or path) within your documents

that can be used by DocumentDB to distribute your data among multiple servers or partitions. DocumentDB will

hash the partition key value and use the hashed result to determine the partition in which the JSON document

will be stored. All documents with the same partition key will be stored in the same partition.

For example, consider an application that stores data about employees and their departments in DocumentDB.

Let's choose "department" as the partition key property, in order to scale out data by department. Every

document in DocumentDB must contain a mandatory "id" property that must be unique for every document

with the same partition key value, e.g. "Marketing ". Every document stored in a collection must have a unique

combination of partition key and id, e.g. { "Department": "Marketing", "id": "0001" } ,

{ "Department": "Marketing", "id": "0002" } , and { "Department": "Sales", "id": "0001" } . In other words, the

compound property of (partition key, id) is the primary key for your collection.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-partition-data.md
https://github.com/arramac
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/mimig1
https://github.com/rnagpal
https://github.com/AndrewHoh
https://github.com/jayantacs
https://github.com/rmca14
https://github.com/johnfmacintyre
https://azure.microsoft.com/services/documentdb/
https://github.com/Azure/azure-documentdb-dotnet/tree/a2d61ddb53f8ab2a23d3ce323c77afcf5a608f52/samples/documentdb-benchmark

NOTE

Partitioning and provisioned throughput

NOTE

Single Partition and Partitioned Collections

The choice of the partition key is an important decision that you’ll have to make at design time. You must pick a

JSON property name that has a wide range of values and is likely to have evenly distributed access patterns. The

partition key is specified as a JSON path, e.g. /department represents the property department.

The following table shows examples of partition key definitions and the JSON values corresponding to each.

Partition Key PathPartition Key Path DescriptionDescription

/department Corresponds to the JSON value of doc.department
where doc is the document.

/properties/name Corresponds to the JSON value of doc.properties.name
where doc is the document (nested property).

/id Corresponds to the JSON value of doc.id (id and
partition key are the same property).

/"department name" Corresponds to the JSON value of doc["department
name"] where doc is the document.

The syntax for partition key path is similar to the path specification for indexing policy paths with the key difference that

the path corresponds to the property instead of the value, i.e. there is no wild card at the end. For example, you would

specify /department/? to index the values under department, but specify /department as the partition key definition. The

partition key path is implicitly indexed and cannot be excluded from indexing using indexing policy overrides.

Let's take a look at how the choice of partition key impacts the performance of your application.

DocumentDB is designed for predictable performance. When you create a collection, you reserve throughput in

terms of request unitsrequest units (RU) per second (RU) per second. Each request is assigned a request unit charge that is proportionate

to the amount of system resources like CPU and IO consumed by the operation. A read of a 1 kB document with

Session consistency consumes 1 request unit. A read is 1 RU regardless of the number of items stored or the

number of concurrent requests running at the same. Larger documents require higher request units depending

on the size. If you know the size of your entities and the number of reads you need to support for your

application, you can provision the exact amount of throughput required for your application's read needs.

When DocumentDB stores documents, it distributes them evenly among partitions based on the partition key

value. The throughput is also distributed evenly among the available partitions i.e. the throughput per partition =

(total throughput per collection)/ (number of partitions).

In order to achieve the full throughput of the collection, you must choose a partition key that allows you to evenly

distribute requests among a number of distinct partition key values.

DocumentDB supports the creation of both single-partition and partitioned collections.

Partitioned collectionsPartitioned collections can span multiple partitions and support very large amounts of storage and

throughput. You must specify a partition key for the collection.

S ingle-partition collectionsS ingle-partition collections have lower price options and the ability to query and perform transactions

across all collection data. They have the scalability and storage limits of a single partition. You do not have to

specify a partition key for these collections.

For scenarios that do not need large volumes of storage or throughput, single partition collections are a good fit.

Note that single-partition collections have the scalability and storage limits of a single partition, i.e. up to 10 GB

of storage and up to 10,000 request units per second.

Partitioned collections can support very large amounts of storage and throughput. The default offers however

are configured to store up to 250 GB of storage and scale up to 250,000 request units per second. If you need

higher storage or throughput per collection, please contact Azure Support to have these increased for your

account.

The following table lists differences in working with a single-partition and partitioned collections:

Single Partition CollectionSingle Partition Collection Partitioned CollectionPartitioned Collection

Partition Key None Required

Primary Key for Document "id" compound key <partition key>
and "id"

Minimum Storage 0 GB 0 GB

Maximum Storage 10 GB Unlimited (250 GB by default)

Minimum Throughput 400 request units per second 10,000 request units per second

Maximum Throughput 10,000 request units per second Unlimited (250,000 request units
per second by default)

 Working with the SDKs

Creating partitioned collections

DocumentClient client = new DocumentClient(new Uri(endpoint), authKey);

await client.CreateDatabaseAsync(new Database { Id = "db" });

// Collection for device telemetry. Here the JSON property deviceId will be used as the partition key to

// spread across partitions. Configured for 10K RU/s throughput and an indexing policy that supports

// sorting against any number or string property.

DocumentCollection myCollection = new DocumentCollection();

myCollection.Id = "coll";

myCollection.PartitionKey.Paths.Add("/deviceId");

await client.CreateDocumentCollectionAsync(

 UriFactory.CreateDatabaseUri("db"),

 myCollection,

 new RequestOptions { OfferThroughput = 20000 });

NOTE

Reading and writing documents

API versions All API 2015-12-16 and newer

Azure DocumentDB added support for automatic partitioning with REST API version 2015-12-16. In order to

create partitioned collections, you must download SDK versions 1.6.0 or newer in one of the supported SDK

platforms (.NET, Node.js, Java, Python).

The following sample shows a .NET snippet to create a collection to store device telemetry data of 20,000 request

units per second of throughput. The SDK sets the OfferThroughput value (which in turn sets the

x-ms-offer-throughput request header in the REST API). Here we set the /deviceId as the partition key. The

choice of partition key is saved along with the rest of the collection metadata like name and indexing policy.

For this sample, we picked deviceId since we know that (a) since there are a large number of devices, writes can

be distributed across partitions evenly and allowing us to scale the database to ingest massive volumes of data

and (b) many of the requests like fetching the latest reading for a device are scoped to a single deviceId and can

be retrieved from a single partition.

In order to create partitioned collections, you must specify a throughput value of > 10,000 request units per second. Since

throughput is in multiples of 100, this has to be 10,100 or higher.

This method makes a REST API call to DocumentDB, and the service will provision a number of partitions based

on the requested throughput. You can change the throughput of a collection as your performance needs evolve.

See Performance Levels for more details.

Now, let's insert data into DocumentDB. Here's a sample class containing a device reading, and a call to

CreateDocumentAsync to insert a new device reading into a collection.

https://msdn.microsoft.com/library/azure/dn781481.aspx

public class DeviceReading

{

 [JsonProperty("id")]

 public string Id;

 [JsonProperty("deviceId")]

 public string DeviceId;

 [JsonConverter(typeof(IsoDateTimeConverter))]

 [JsonProperty("readingTime")]

 public DateTime ReadingTime;

 [JsonProperty("metricType")]

 public string MetricType;

 [JsonProperty("unit")]

 public string Unit;

 [JsonProperty("metricValue")]

 public double MetricValue;

 }

// Create a document. Here the partition key is extracted as "XMS-0001" based on the collection definition

await client.CreateDocumentAsync(

 UriFactory.CreateDocumentCollectionUri("db", "coll"),

 new DeviceReading

 {

 Id = "XMS-001-FE24C",

 DeviceId = "XMS-0001",

 MetricType = "Temperature",

 MetricValue = 105.00,

 Unit = "Fahrenheit",

 ReadingTime = DateTime.UtcNow

 });

// Read document. Needs the partition key and the ID to be specified

Document result = await client.ReadDocumentAsync(

 UriFactory.CreateDocumentUri("db", "coll", "XMS-001-FE24C"),

 new RequestOptions { PartitionKey = new PartitionKey("XMS-0001") });

DeviceReading reading = (DeviceReading)(dynamic)result;

// Update the document. Partition key is not required, again extracted from the document

reading.MetricValue = 104;

reading.ReadingTime = DateTime.UtcNow;

await client.ReplaceDocumentAsync(

 UriFactory.CreateDocumentUri("db", "coll", "XMS-001-FE24C"),

 reading);

// Delete document. Needs partition key

await client.DeleteDocumentAsync(

 UriFactory.CreateDocumentUri("db", "coll", "XMS-001-FE24C"),

 new RequestOptions { PartitionKey = new PartitionKey("XMS-0001") });

Querying partitioned collections

Let's read the document by it's partition key and id, update it, and then as a final step, delete it by partition key

and id. Note that the reads include a PartitionKey value (corresponding to the x-ms-documentdb-partitionkey

request header in the REST API).

When you query data in partitioned collections, DocumentDB automatically routes the query to the partitions

corresponding to the partition key values specified in the filter (if there are any). For example, this query is routed

to just the partition containing the partition key "XMS-0001".

// Query using partition key

IQueryable<DeviceReading> query = client.CreateDocumentQuery<DeviceReading>(

 UriFactory.CreateDocumentCollectionUri("db", "coll"))

 .Where(m => m.MetricType == "Temperature" && m.DeviceId == "XMS-0001");

// Query across partition keys

IQueryable<DeviceReading> crossPartitionQuery = client.CreateDocumentQuery<DeviceReading>(

 UriFactory.CreateDocumentCollectionUri("db", "coll"),

 new FeedOptions { EnableCrossPartitionQuery = true })

 .Where(m => m.MetricType == "Temperature" && m.MetricValue > 100);

Parallel Query Execution

// Cross-partition Order By Queries

IQueryable<DeviceReading> crossPartitionQuery = client.CreateDocumentQuery<DeviceReading>(

 UriFactory.CreateDocumentCollectionUri("db", "coll"),

 new FeedOptions { EnableCrossPartitionQuery = true, MaxDegreeOfParallelism = 10, MaxBufferedItemCount =

100})

 .Where(m => m.MetricType == "Temperature" && m.MetricValue > 100)

 .OrderBy(m => m.MetricValue);

Executing stored procedures

await client.ExecuteStoredProcedureAsync<DeviceReading>(

 UriFactory.CreateStoredProcedureUri("db", "coll", "SetLatestStateAcrossReadings"),

 new RequestOptions { PartitionKey = new PartitionKey("XMS-001") },

 "XMS-001-FE24C");

Migrating from single-partition to partitioned collections

The following query does not have a filter on the partition key (DeviceId) and is fanned out to all partitions where

it is executed against the partition's index. Note that you have to specify the EnableCrossPartitionQuery (

x-ms-documentdb-query-enablecrosspartition in the REST API) to have the SDK to execute a query across

partitions.

The DocumentDB SDKs 1.9.0 and above support parallel query execution options, which allow you to perform

low latency queries against partitioned collections, even when they need to touch a large number of partitions.

For example, the following query is configured to run in parallel across partitions.

You can manage parallel query execution by tuning the following parameters:

By setting MaxDegreeOfParallelism , you can control the degree of parallelism i.e., the maximum number of

simultaneous network connections to the collection's partitions. If you set this to -1, the degree of parallelism

is managed by the SDK. If the MaxDegreeOfParallelism is not specified or set to 0, which is the default value,

there will be a single network connection to the collection's partitions.

By setting MaxBufferedItemCount , you can trade off query latency and client side memory utilization. If you

omit this parameter or set this to -1, the number of items buffered during parallel query execution is

managed by the SDK.

Given the same state of the collection, a parallel query will return results in the same order as in serial execution.

When performing a cross-partition query that includes sorting (ORDER BY and/or TOP), the DocumentDB SDK

issues the query in parallel across partitions and merges partially sorted results in the client side to produce

globally ordered results.

You can also execute atomic transactions against documents with the same device ID, e.g. if you're maintaining

aggregates or the latest state of a device in a single document.

In the next section, we look at how you can move to partitioned collections from single-partition collections.

TIP

Designing for partitioning

When an application using a single-partition collection needs higher throughput (>10,000 RU/s) or larger data

storage (>10GB), you can use the DocumentDB Data Migration Tool to migrate the data from the single-partition

collection to a partitioned collection.

To migrate from a single-partition collection to a partitioned collection

1. Export data from the single-partition collection to JSON. See Export to JSON file for additional details.

2. Import the data into a partitioned collection created with a partition key definition and over 10,000 request

units per second throughput, as shown in the example below. See Import to DocumentDB for additional

details.

For faster import times, consider increasing the Number of Parallel Requests to 100 or higher to take advantage of the

higher throughput available for partitioned collections.

Now that we've completed the basics, let's look at a few important design considerations when working with

partition keys in DocumentDB.

The choice of the partition key is an important decision that you’ll have to make at design time. This section

describes some of the tradeoffs involved in selecting a partition key for your collection.

http://www.microsoft.com/downloads/details.aspx?FamilyID=cda7703a-2774-4c07-adcc-ad02ddc1a44d

Partition key as the transaction boundary

Avoiding storage and performance bottlenecks

Examples of good partition keys

Partitioning and logging/time-series data

Partitioning and multi-tenancy

Your choice of partition key should balance the need to enable the use of transactions against the requirement to

distribute your entities across multiple partition keys to ensure a scalable solution. At one extreme, you could set

the same partition key for all your documents, but this may limit the scalability of your solution. At the other

extreme, you could assign a unique partition key for each document, which would be highly scalable but would

prevent you from using cross document transactions via stored procedures and triggers. An ideal partition key is

one that enables you to use efficient queries and that has sufficient cardinality to ensure your solution is scalable.

It is also important to pick a property which allows writes to be distributed across a number of distinct values.

Requests to the same partition key cannot exceed the throughput of a single partition, and will be throttled. So it

is important to pick a partition key that does not result in "hot spots""hot spots" within your application. The total storage

size for documents with the same partition key can also not exceed 10 GB in storage.

Here are a few examples for how to pick the partition key for your application:

If you’re implementing a user profile backend, then the user ID is a good choice for partition key.

If you’re storing IoT data e.g. device state, a device ID is a good choice for partition key.

If you’re using DocumentDB for logging time-series data, then the hostname or process ID is a good choice

for partition key.

If you have a multi-tenant architecture, the tenant ID is a good choice for partition key.

Note that in some use cases (like the IoT and user profiles described above), the partition key might be the same

as your id (document key). In others like the time series data, you might have a partition key that’s different than

the id.

One of the most common use cases of DocumentDB is for logging and telemetry. It is important to pick a good

partition key since you might need to read/write vast volumes of data. The choice will depend on your read and

write rates and kinds of queries you expect to run. Here are some tips on how to choose a good partition key.

If your use case involves a small rate of writes acculumating over a long period of time, and need to query by

ranges of timestamps and other filters, then using a rollup of the timestamp e.g. date as a partition key is a

good approach. This allows you to query over all the data for a date from a single partition.

If your workload is write heavy, which is generally more common, you should use a partition key that’s not

based on timestamp so that DocumentDB can distribute writes evenly across a number of partitions. Here a

hostname, process ID, activity ID, or another property with high cardinality is a good choice.

A third approach is a hybrid one where you have multiple collections, one for each day/month and the

partition key is a granular property like hostname. This has the benefit that you can set different performance

levels based on the time window, e.g. the collection for the current month is provisioned with higher

throughput since it serves reads and writes, whereas previous months with lower throughput since they only

serve reads.

If you are implementing a multi-tenant application using DocumentDB, there are two major patterns for

implementing tenancy with DocumentDB – one partition key per tenant, and one collection per tenant. Here are

the pros and cons for each:

One Partition Key per tenant: In this model, tenants are collocated within a single collection. But queries and

inserts for documents within a single tenant can be performed against a single partition. You can also

implement transactional logic across all documents within a tenant. Since multiple tenants share a collection,

you can save storage and throughput costs by pooling resources for tenants within a single collection rather

than provisioning extra headroom for each tenant. The drawback is that you do not have performance

Next Steps

isolation per tenant. Performance/throughput increases apply to the entire collection vs targeted increases for

tenants.

One Collection per tenant: Each tenant has its own collection. In this model, you can reserve performance per

tenant. With DocumentDB's new consumption based pricing model, this model is more cost-effective for

multi-tenant applications with a small number of tenants.

You can also use a combination/tiered approach that collocates small tenants and migrates larger tenants to

their own collection.

In this article, we've described how partitioning works in Azure DocumentDB, how you can create partitioned

collections, and how you can pick a good partition key for your application.

Perform scale and performance testing with DocumentDB. See Performance and Scale Testing with Azure

DocumentDB for a sample.

Get started coding with the SDKs or the REST API

Learn about provisioned throughput in DocumentDB

If you would like to customize how your application performs partitioning, you can plug in your own client-

side partitioning implementation. See Client-side partitioning support.

https://msdn.microsoft.com/library/azure/dn781481.aspx
file:///D:/azure-docs-pr/_site/azure/.tmp/documentdb/documentdb-sharding.html

Syam Nair • mimig • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • Digvijay Makwana • Kirat Pandya • v-aljenk

• John Macintyre

Consistency levels in DocumentDB
11/22/2016 • 6 min to read • Edit on GitHub

Contributors

Scope of consistency

Consistency levels

Azure DocumentDB is designed from the ground up with global distribution in mind. It is designed to offer

predictable low latency guarantees, a 99.99% availability SLA, and multiple well-defined relaxed consistency

models. Currently, DocumentDB provides four consistency levels: strong, bounded-staleness, session, and

eventual. Besides the strongstrong and the eventual consistencyeventual consistency models commonly offered by other NoSQL

databases, DocumentDB also offers two carefully codified and operationalized consistency models – boundedbounded

stalenessstaleness and sessionsession , and has validated their usefulness against real world use cases. Collectively these four

consistency levels enable you to make well-reasoned trade-offs between consistency, availability, and latency.

The granularity of consistency is scoped to a single user request. A write request may correspond to an insert,

replace, upsert, or delete transaction (with or without the execution of an associated pre or post trigger). Or a

write request may correspond to the transactional execution of a JavaScript stored procedure operating over

multiple documents within a partition. As with the writes, a read/query transaction is also scoped to a single

user request. The user may be required to paginate over a large result-set, spanning multiple partitions, but

each read transaction is scoped to a single page and served from within a single partition.

You can configure a default consistency level on your database account that applies to all the collections

(across all of the databases) under your database account. By default, all reads and queries issued against the

user defined resources will use the default consistency level specified on the database account. However, you

can relax the consistency level of a specific read/query request by specifying the [x-ms-consistency-level]

request header. There are four types of consistency levels supported by the DocumentDB replication protocol

that provide a clear trade-off between specific consistency guarantees and performance, as described below.

S trongStrong:

Strong consistency offers a linearizability guarantee with the reads guaranteed to return the most recent

version of a document.

Strong consistency guarantees that a write is only visible after it is committed durably by the majority

quorum of replicas. A write is either synchronously committed durably by both the primary and the

quorum of secondaries, or it is aborted. A read is always acknowledged by the majority read quorum, a

client can never see an uncommitted or partial write and is always guaranteed to read the latest

acknowledged write.

DocumentDB accounts that are configured to use strong consistency cannot associate more than one Azure

region with their DocumentDB account.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-consistency-levels.md
https://github.com/syamkmsft
https://github.com/mimig1
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/dmakwana
https://github.com/kiratp
https://github.com/v-aljenk
https://github.com/johnfmacintyre
https://msdn.microsoft.com/library/azure/mt632096.aspx
https://aphyr.com/posts/313-strong-consistency-models

Consistency guarantees

The cost of a read operation (in terms of request units consumed) with strong consistency is higher than

session and eventual, but the same as bounded staleness.

Bounded stalenessBounded staleness :

Bounded staleness consistency guarantees that the reads may lag behind writes by at most K versions or

prefixes of a document or t time-interval.

Consequently, when choosing bounded staleness, the “staleness” can be configured in two ways:

Bounded staleness offers total global order except within the “staleness window”. Note that the monotonic

read guarantees exists within a region both inside and outside the “staleness window”.

Bounded staleness provides a stronger consistency guarantee than session or eventual consistency. For

globally distributed applications, we recommend you use bounded staleness for scenarios where you

would like to have strong consistency but also want 99.99% availability and low latency.

DocumentDB accounts that are configured with bounded staleness consistency can associate any number

of Azure regions with their DocumentDB account.

The cost of a read operation (in terms of RUs consumed) with bounded staleness is higher than session

and eventual consistency, but the same as strong consistency.

Number of versions K of the document by which the reads lag behind the writes

Time interval t

SessionSession :

Unlike the global consistency models offered by strong and bounded staleness consistency levels, session

consistency is scoped to a client session.

Session consistency is ideal for all scenarios where a device or user session is involved since it guarantees

monotonic reads, monotonic writes, and read your own writes (RYW) guarantees.

Session consistency provides predictable consistency for a session, and maximum read throughput while

offering the lowest latency writes and reads.

DocumentDB accounts that are configured with session consistency can associate any number of Azure

regions with their DocumentDB account.

The cost of a read operation (in terms of RUs consumed) with session consistency level is less than strong

and bounded staleness, but more than eventual consistency

EventualEventual :

Eventual consistency guarantees that in absence of any further writes, the replicas within the group will

eventually converge.

Eventual consistency is the weakest form of consistency where a client may get the values that are older

than the ones it had seen before.

Eventual consistency provides the weakest read consistency but offers the lowest latency for both reads

and writes.

DocumentDB accounts that are configured with eventual consistency can associate any number of Azure

regions with their DocumentDB account.

The cost of a read operation (in terms of RUs consumed) with the eventual consistency level is the lowest

of all the DocumentDB consistency levels.

The following table captures various consistency guarantees corresponding to the four consistency levels.

GUARANTEEGUARANTEE STRONGSTRONG
BOUNDEDBOUNDED
STALENESSSTALENESS SESSIONSESSION EVENTUALEVENTUAL

Total global orderTotal global order Yes Yes, outside of the
“staleness window”

No, partial “session”
order

No

Consistent prefixConsistent prefix
guaranteeguarantee

Yes Yes Yes Yes

Monotonic readsMonotonic reads Yes Yes, across regions
outside of the
staleness window
and within a region
all the time.

Yes, for the given
session

No

Monotonic writesMonotonic writes Yes Yes Yes Yes

Read your writesRead your writes Yes Yes Yes (in the write
region)

No

Configuring the default consistency level

NOTE

Consistency levels for queries

1. In the Azure portal, in the Jumpbar, click DocumentDB (NoSQL)DocumentDB (NoSQL) .

2. In the DocumentDB (NoSQL)DocumentDB (NoSQL) blade, select the database account to modify.

3. In the account blade, click Default consistencyDefault consistency .

4. In the Default ConsistencyDefault Consistency blade, select the new consistency level and click SaveSave.

Configuring the default consistency level is not supported within the Azure DocumentDB Emulator.

By default, for user defined resources, the consistency level for queries is the same as the consistency level for

reads. By default, the index is updated synchronously on each insert, replace, or delete of a document to the

collection. This enables the queries to honor the same consistency level as that of the document reads. While

https://portal.azure.com/

INDEXING MODEINDEXING MODE READSREADS QUERIESQUERIES

Consistent (default) Select from strong, bounded
staleness, session, or eventual

Select from strong, bounded
staleness, session, or eventual

Lazy Select from strong, bounded
staleness, session, or eventual

Eventual

None Select from strong, bounded
staleness, session, or eventual

Not applicable

Next steps

DocumentDB is write optimized and supports sustained volumes of document writes, synchronous index

maintenance and serving consistent queries, you can configure certain collections to update their index lazily.

Lazy indexing further boosts the write performance and is ideal for bulk ingestion scenarios when a workload

is primarily read-heavy.

As with read requests, you can lower the consistency level of a specific query request by specifying the x-ms-

consistency-level request header.

If you'd like to do more reading about consistency levels and tradeoffs, we recommend the following

resources:

Doug Terry. Replicated Data Consistency explained through baseball (video).

https://www.youtube.com/watch?v=gluIh8zd26I

Doug Terry. Replicated Data Consistency explained through baseball.

http://research.microsoft.com/pubs/157411/ConsistencyAndBaseballReport.pdf

Doug Terry. Session Guarantees for Weakly Consistent Replicated Data.

http://dl.acm.org/citation.cfm?id=383631

Daniel Abadi. Consistency Tradeoffs in Modern Distributed Database Systems Design: CAP is only part of

the story”.

http://computer.org/csdl/mags/co/2012/02/mco2012020037-abs.html

Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein, Ion Stoica. Probabilistic

Bounded Staleness (PBS) for Practical Partial Quorums.

http://vldb.org/pvldb/vol5/p776_peterbailis_vldb2012.pdf

Werner Vogels. Eventual Consistent - Revisited.

http://allthingsdistributed.com/2008/12/eventually_consistent.html

https://msdn.microsoft.com/library/azure/mt632096.aspx
https://www.youtube.com/watch?v=gluIh8zd26I
https://www.youtube.com/watch?v=gluIh8zd26I
http://research.microsoft.com/pubs/157411/ConsistencyAndBaseballReport.pdf
http://research.microsoft.com/pubs/157411/ConsistencyAndBaseballReport.pdf
http://dl.acm.org/citation.cfm?id=383631
http://dl.acm.org/citation.cfm?id=383631
http://computer.org/csdl/mags/co/2012/02/mco2012020037-abs.html
http://computer.org/csdl/mags/co/2012/02/mco2012020037-abs.html
http://vldb.org/pvldb/vol5/p776_peterbailis_vldb2012.pdf
http://vldb.org/pvldb/vol5/p776_peterbailis_vldb2012.pdf
http://allthingsdistributed.com/2008/12/eventually_consistent.html
http://allthingsdistributed.com/2008/12/eventually_consistent.html

mimig • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • Carl Rabeler

NoSQL vs SQL
11/15/2016 • 5 min to read • Edit on GitHub

Contributors

When to use NoSQL?

SQL Server and relational databases (RDBMS) have been the go-to databases for over 20 years. However, the

increased need to process higher volumes, velocities, and varieties of data at a rapid rate has altered the nature of

data storage needs for application developers. In order to enable this scenario, NoSQL databases that enable

storing unstructured and heterogeneous data at scale have gained in popularity. For most developers, relational

databases are the default or go-to option because a table structure is easy to understand and is familiar, but there

are many reasons to explore beyond relational databases.

NoSQL is a category of databases distinctly different from SQL databases. NoSQL is often used to refer to data

management systems that are “Not SQL” or an approach to data management that includes “Not only SQL". There

are a number of technologies in the NoSQL category, including document databases, key value stores, column

family stores, and graph databases, which are popular with gaming, social, and IoT apps.

The goal of this article is to help you learn about the differences between NoSQL and SQL, and provide you with an

introduction to the NoSQL and SQL offerings from Microsoft.

Let's imagine you're building a new social engagement site. Users can create posts and add pictures, videos and

music to them. Other users can comment on the posts and give points (likes) to rate the posts. The landing page

will have a feed of posts that users can share and interact with.

So how do you store this data? If you're familiar with SQL, you might start drawing something like this:

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-nosql-vs-sql.md
https://github.com/mimig1
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/CarlRabeler

{

 "id":"ew12-res2-234e-544f",

 "title":"post title",

 "date":"2016-01-01",

 "body":"this is an awesome post stored on NoSQL",

 "createdBy":User,

 "images":["http://myfirstimage.png","http://mysecondimage.png"],

 "videos":[

 {"url":"http://myfirstvideo.mp4", "title":"The first video"},

 {"url":"http://mysecondvideo.mp4", "title":"The second video"}

],

 "audios":[

 {"url":"http://myfirstaudio.mp3", "title":"The first audio"},

 {"url":"http://mysecondaudio.mp3", "title":"The second audio"}

]

}

So far, so good, but now think about the structure of a single post and how to display it. If you want to show the

post and the associated images, audio, video, comments, points, and user info on a website or application, you'd

have to perform a query with eight table joins just to retrieve the content. Now imagine a stream of posts that

dynamically load and appear on the screen and you can easily predict that it's going to require thousands of

queries and many joins to complete the task.

Now you could use a relational solution like SQL Server to store the data and query it using joins, as SQL supports

dynamic data formatted as JSON - but there's another option, a NoSQL option that simplifies the approach for this

specific scenario. By using a single document like the following and storing it in DocumentDB, an Azure NoSQL

document database service, you can increase performance and retrieve the whole post with one query and no

joins. It's a simpler, more straightforward, and more performant result.

In addition, this data can be partitioned by post id allowing the data to scale out naturally and take advantage of

NoSQL scale characteristics. Also NoSQL systems allow developers to loosen consistency and offer highly available

apps with low-latency. Finally, this solution does not require developers to define, manage and maintain schema in

the data tier allowing for rapid iteration.

You can then build on this solution using other Azure services:

Azure Search can be used via the web app to enable users to search for posts.

Azure App Services can be used to host applications and background processes.

Azure Blob Storage can be used to store full user profiles including images.

Azure SQL Database can be used to store massive amounts of data such as login information, and data for

usage analytics.

https://msdn.microsoft.com/library/dn921897.aspx
https://azure.microsoft.com/services/search/
https://azure.microsoft.com/services/app-service/
https://azure.microsoft.com/services/storage/
https://azure.microsoft.com/services/sql-database/

NoSQL vs SQL comparison

What are the Microsoft Azure NoSQL offerings?

Azure Machine Learning can be used to build knowledge and intelligence that can provide feedback to the

process and help deliver the right content to the right users.

This social engagement site is just one one scenario in which a NoSQL database is the right data model for the job.

If you're interested in reading more about this scenario and how to model your data for DocumentDB in social

media applications, see Going social with DocumentDB.

The following table compares the main differences between NoSQL and SQL.

If a NoSQL database best suits your requirements, continue to the next section to learn more about the NoSQL

services available from Azure. Otherwise, if a SQL database best suits your needs, skip to What are the Microsoft

SQL offerings?

Azure has four fully-managed NoSQL services:

Azure DocumentDB

Azure Table Storage

Azure HBase as a part of HDInsight

Azure Redis Cache

The following comparison chart maps out the key differentiators for each service. Which one most accurately

describes the needs of your application?

https://azure.microsoft.com/services/machine-learning/
https://azure.microsoft.com/services/documentdb/
https://azure.microsoft.com/services/storage/
https://azure.microsoft.com/services/hdinsight/
https://azure.microsoft.com/services/cache/

 What are the Microsoft SQL offerings?

If one or more of these services might meet the needs of your application, learn more with the following resources:

DocumentDB learning path and DocumentDB use cases

Get started with Azure table storage

What is HBase in HDInsight

Redis Cache learning path

Then go to Next steps for free trial information.

Microsoft has five SQL offerings:

Azure SQL Database

SQL Server on Azure Virtual Machines

SQL Server

Azure SQL Data Warehouse

Analytics Platform System (on-premises appliance)

If you're interested in SQL Server on a Virtual Machine or SQL Database, then read Choose a cloud SQL Server

option: Azure SQL (PaaS) Database or SQL Server on Azure VMs (IaaS) to learn more about the differences

between the two.

If SQL sounds like the best option, then go to SQL Server to learn more about what our Microsoft SQL products

and services have to offer.

https://azure.microsoft.com/documentation/learning-paths/documentdb/
file:///D:/azure-docs-pr/_site/azure/.tmp/storage/storage-dotnet-how-to-use-tables.html
file:///D:/azure-docs-pr/_site/azure/.tmp/hdinsight/hdinsight-hbase-overview.html
https://azure.microsoft.com/documentation/learning-paths/redis-cache/
https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/services/virtual-machines/sql-server/
https://www.microsoft.com/server-cloud/products/sql-server-2016/
https://azure.microsoft.com/services/sql-data-warehouse/
https://www.microsoft.com/en-us/server-cloud/products/analytics-platform-system/
file:///D:/azure-docs-pr/_site/azure/.tmp/sql-database/sql-database-paas-vs-sql-server-iaas.html
https://www.microsoft.com/server-cloud/products/

 Next steps

Then go to Next steps for free trial and evaluation links.

We invite you to learn more about our SQL and NoSQL products by trying them out for free.

For all Azure services, you can sign up for a free one-month trial and receive $200 to spend on any of the

Azure services.

Azure DocumentDB

Azure HBase as a part of HDInsight

Azure Redis Cache

Azure SQL Data Warehouse

Azure SQL Database

Azure Table Storage

You can spin up an evaluation version of SQL Server 2016 on a virtual machine or download an evaluation

version of SQL Server.

SQL Server

SQL Server on Azure Virtual Machines

https://azure.microsoft.com/pricing/free-trial/
https://azure.microsoft.com/services/documentdb/
https://azure.microsoft.com/services/hdinsight/
https://azure.microsoft.com/services/cache/
https://azure.microsoft.com/services/sql-data-warehouse/
https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/services/storage/
https://azure.microsoft.com/marketplace/partners/microsoft/sqlserver2016ctp33evaluationwindowsserver2012r2/
https://www.microsoft.com/en-us/evalcenter/evaluate-sql-server-2016
https://www.microsoft.com/server-cloud/products/sql-server-2016/
https://azure.microsoft.com/services/virtual-machines/sql-server/

Andrew Hoh • mimig • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • Ross McAllister • Stephen Baron

Import data to DocumentDB with the Database
Migration tool
11/22/2016 • 21 min to read • Edit on GitHub

Contributors

Prerequisites

Overview of the DocumentDB Data Migration Tool

Installing the DocumentDB Data Migration tool

This article shows you how to use the official open source DocumentDB data migration tool to import data to

Microsoft Azure DocumentDB from various sources, including JSON files, CSV files, SQL, MongoDB, Azure Table

storage, Amazon DynamoDB and DocumentDB collections.

After reading this article, you'll be able to answer the following questions:

How can I import JSON file, CSV file, SQL Server data, or MongoDB data to DocumentDB?

How can I import data from Azure Table storage, Amazon DynamoDB, and HBase to DocumentDB?

How can I migrate data between DocumentDB collections?

Before following the instructions in this article, ensure that you have the following installed:

Microsoft .NET Framework 4.51 or higher.

The DocumentDB Data Migration tool is an open source solution that imports data to DocumentDB from a variety

of sources, including:

JSON files

MongoDB

SQL Server

CSV files

Azure Table storage

Amazon DynamoDB

HBase

DocumentDB collections

While the import tool includes a graphical user interface (dtui.exe), it can also be driven from the command line

(dt.exe). In fact, there is an option to output the associated command after setting up an import through the UI.

Tabular source data (e.g. SQL Server or CSV files) can be transformed such that hierarchical relationships

(subdocuments) can be created during import. Keep reading to learn more about source options, sample

command lines to import from each source, target options, and viewing import results.

The migration tool source code is available on GitHub in this repository and a compiled version is available from

Microsoft Download Center. You may either compile the solution or simply download and extract the compiled

version to a directory of your choice. Then run either:

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-import-data.md
https://github.com/AndrewHoh
https://github.com/mimig1
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/rmca14
https://github.com/stephbaron
https://azure.microsoft.com/services/documentdb/
https://www.microsoft.com/download/developer-tools.aspx
https://github.com/azure/azure-documentdb-datamigrationtool
http://www.microsoft.com/downloads/details.aspx?FamilyID=cda7703a-2774-4c07-adcc-ad02ddc1a44d

 Import JSON files

Dtui.exeDtui.exe: Graphical interface version of the tool

Dt.exeDt.exe: Command-line version of the tool

The JSON file source importer option allows you to import one or more single document JSON files or JSON files

that each contain an array of JSON documents. When adding folders that contain JSON files to import, you have

the option of recursively searching for files in subfolders.

Here are some command line samples to import JSON files:

#Import a single JSON file

dt.exe /s:JsonFile /s.Files:.\Sessions.json /t:DocumentDBBulk /t.ConnectionString:"AccountEndpoint=<DocumentDB

Endpoint>;AccountKey=<DocumentDB Key>;Database=<DocumentDB Database>;" /t.Collection:Sessions

/t.CollectionThroughput:2500

#Import a directory of JSON files

dt.exe /s:JsonFile /s.Files:C:\TESessions*.json /t:DocumentDBBulk /t.ConnectionString:" AccountEndpoint=

<DocumentDB Endpoint>;AccountKey=<DocumentDB Key>;Database=<DocumentDB Database>;" /t.Collection:Sessions

/t.CollectionThroughput:2500

#Import a directory (including sub-directories) of JSON files

dt.exe /s:JsonFile /s.Files:C:\LastFMMusic***.json /t:DocumentDBBulk /t.ConnectionString:" AccountEndpoint=

<DocumentDB Endpoint>;AccountKey=<DocumentDB Key>;Database=<DocumentDB Database>;" /t.Collection:Music

/t.CollectionThroughput:2500

#Import a directory (single), directory (recursive), and individual JSON files

dt.exe /s:JsonFile

/s.Files:C:\Tweets*.*;C:\LargeDocs***.*;C:\TESessions\Session48172.json;C:\TESessions\Session48173.json;C:\T

ESessions\Session48174.json;C:\TESessions\Session48175.json;C:\TESessions\Session48177.json /t:DocumentDBBulk

/t.ConnectionString:"AccountEndpoint=<DocumentDB Endpoint>;AccountKey=<DocumentDB Key>;Database=<DocumentDB

Database>;" /t.Collection:subs /t.CollectionThroughput:2500

#Import a single JSON file and partition the data across 4 collections

dt.exe /s:JsonFile /s.Files:D:\\CompanyData\\Companies.json /t:DocumentDBBulk

/t.ConnectionString:"AccountEndpoint=<DocumentDB Endpoint>;AccountKey=<DocumentDB Key>;Database=<DocumentDB

Database>;" /t.Collection:comp[1-4] /t.PartitionKey:name /t.CollectionThroughput:2500

Import from MongoDB

The MongoDB source importer option allows you to import from an individual MongoDB collection and

optionally filter documents using a query and/or modify the document structure by using a projection.

The connection string is in the standard MongoDB format:

mongodb://<dbuser>:<dbpassword>@<host>:<port>/<database>

NOTE

#Import all documents from a MongoDB collection

dt.exe /s:MongoDB /s.ConnectionString:mongodb://<dbuser>:<dbpassword>@<host>:<port>/<database>

/s.Collection:zips /t:DocumentDBBulk /t.ConnectionString:"AccountEndpoint=<DocumentDB Endpoint>;AccountKey=

<DocumentDB Key>;Database=<DocumentDB Database>;" /t.Collection:BulkZips /t.IdField:_id

/t.CollectionThroughput:2500

#Import documents from a MongoDB collection which match the query and exclude the loc field

dt.exe /s:MongoDB /s.ConnectionString:mongodb://<dbuser>:<dbpassword>@<host>:<port>/<database>

/s.Collection:zips /s.Query:{pop:{$gt:50000}} /s.Projection:{loc:0} /t:DocumentDBBulk

/t.ConnectionString:"AccountEndpoint=<DocumentDB Endpoint>;AccountKey=<DocumentDB Key>;Database=<DocumentDB

Database>;" /t.Collection:BulkZipsTransform /t.IdField:_id/t.CollectionThroughput:2500

Import MongoDB export files

Use the Verify command to ensure that the MongoDB instance specified in the connection string field can be accessed.

Enter the name of the collection from which data will be imported. You may optionally specify or provide a file for

a query (e.g. {pop: {$gt:5000}}) and/or projection (e.g. {loc:0}) to both filter and shape the data to be imported.

Here are some command line samples to import from MongoDB:

The MongoDB export JSON file source importer option allows you to import one or more JSON files produced

from the mongoexport utility.

When adding folders that contain MongoDB export JSON files for import, you have the option of recursively

searching for files in subfolders.

dt.exe /s:MongoDBExport /s.Files:D:\mongoemployees.json /t:DocumentDBBulk /t.ConnectionString:"AccountEndpoint=

<DocumentDB Endpoint>;AccountKey=<DocumentDB Key>;Database=<DocumentDB Database>;" /t.Collection:employees

/t.IdField:_id /t.Dates:Epoch /t.CollectionThroughput:2500

Import from SQL Server

NOTE

Here is a command line sample to import from MongoDB export JSON files:

The SQL source importer option allows you to import from an individual SQL Server database and optionally

filter the records to be imported using a query. In addition, you can modify the document structure by specifying

a nesting separator (more on that in a moment).

The format of the connection string is the standard SQL connection string format.

Use the Verify command to ensure that the SQL Server instance specified in the connection string field can be accessed.

The nesting separator property is used to create hierarchical relationships (sub-documents) during import.

Consider the following SQL query:

select CAST(BusinessEntityID AS varchar) as Id, Name, AddressType as [Address.AddressType], AddressLine1 as

[Address.AddressLine1], City as [Address.Location.City], StateProvinceName as

[Address.Location.StateProvinceName], PostalCode as [Address.PostalCode], CountryRegionName as

[Address.CountryRegionName] from Sales.vStoreWithAddresses WHERE AddressType='Main Office'

Which returns the following (partial) results:

#Import records from SQL which match a query

dt.exe /s:SQL /s.ConnectionString:"Data Source=<server>;Initial Catalog=AdventureWorks;User

Id=advworks;Password=<password>;" /s.Query:"select CAST(BusinessEntityID AS varchar) as Id, * from

Sales.vStoreWithAddresses WHERE AddressType='Main Office'" /t:DocumentDBBulk /t.ConnectionString:"

AccountEndpoint=<DocumentDB Endpoint>;AccountKey=<DocumentDB Key>;Database=<DocumentDB Database>;"

/t.Collection:Stores /t.IdField:Id /t.CollectionThroughput:2500

#Import records from sql which match a query and create hierarchical relationships

dt.exe /s:SQL /s.ConnectionString:"Data Source=<server>;Initial Catalog=AdventureWorks;User

Id=advworks;Password=<password>;" /s.Query:"select CAST(BusinessEntityID AS varchar) as Id, Name, AddressType

as [Address.AddressType], AddressLine1 as [Address.AddressLine1], City as [Address.Location.City],

StateProvinceName as [Address.Location.StateProvinceName], PostalCode as [Address.PostalCode],

CountryRegionName as [Address.CountryRegionName] from Sales.vStoreWithAddresses WHERE AddressType='Main

Office'" /s.NestingSeparator:. /t:DocumentDBBulk /t.ConnectionString:" AccountEndpoint=<DocumentDB

Endpoint>;AccountKey=<DocumentDB Key>;Database=<DocumentDB Database>;" /t.Collection:StoresSub /t.IdField:Id

/t.CollectionThroughput:2500

Import CSV files - Convert CSV to JSON

Note the aliases such as Address.AddressType and Address.Location.StateProvinceName. By specifying a nesting

separator of ‘.’, the import tool creates Address and Address.Location subdocuments during the import. Here is

an example of a resulting document in DocumentDB:

{ "id": "956", "Name": "Finer Sales and Service", "Address": { "AddressType": "Main Office", "AddressLine1": "#500-

75 O'Connor Street", "Location": { "City": "Ottawa", "StateProvinceName": "Ontario" }, "PostalCode": "K4B 1S2",

"CountryRegionName": "Canada" } }

Here are some command line samples to import from SQL Server:

The CSV file source importer option enables you to import one or more CSV files. When adding folders that

contain CSV files for import, you have the option of recursively searching for files in subfolders.

Similar to the SQL source, the nesting separator property may be used to create hierarchical relationships (sub-

documents) during import. Consider the following CSV header row and data rows:

Note the aliases such as DomainInfo.Domain_Name and RedirectInfo.Redirecting. By specifying a nesting

separator of ‘.’, the import tool will create DomainInfo and RedirectInfo subdocuments during the import. Here is

an example of a resulting document in DocumentDB:

{ "DomainInfo": { "Domain_Name": "ACUS.GOV", "Domain_Name_Address": "http://www.ACUS.GOV" }, "Federal

Agency": "Administrative Conference of the United States", "RedirectInfo": { "Redirecting": "0",

"Redirect_Destination": "" }, "id": "9cc565c5-ebcd-1c03-ebd3-cc3e2ecd814d" }

The import tool will attempt to infer type information for unquoted values in CSV files (quoted values are always

treated as strings). Types are identified in the following order: number, datetime, boolean.

There are two other things to note about CSV import:

1. By default, unquoted values are always trimmed for tabs and spaces, while quoted values are preserved as-is.

This behavior can be overridden with the Trim quoted values checkbox or the /s.TrimQuoted command line

option.

2. By default, an unquoted null is treated as a null value. This behavior can be overridden (i.e. treat an unquoted

null as a “null” string) with the Treat unquoted NULL as string checkbox or the /s.NoUnquotedNulls command

line option.

Here is a command line sample for CSV import:

http://www.acus.gov

dt.exe /s:CsvFile /s.Files:.\Employees.csv /t:DocumentDBBulk /t.ConnectionString:"AccountEndpoint=<DocumentDB

Endpoint>;AccountKey=<DocumentDB Key>;Database=<DocumentDB Database>;" /t.Collection:Employees

/t.IdField:EntityID /t.CollectionThroughput:2500

Import from Azure Table storage

DefaultEndpointsProtocol=<protocol>;AccountName=<Account Name>;AccountKey=<Account Key>;

NOTE

The Azure Table storage source importer option allows you to import from an individual Azure Table storage

table and optionally filter the table entities to be imported.

The format of the Azure Table storage connection string is:

Use the Verify command to ensure that the Azure Table storage instance specified in the connection string field can be

accessed.

Enter the name of the Azure table from which data will be imported. You may optionally specify a filter.

The Azure Table storage source importer option has the following additional options:

1. Include Internal Fields

2. Select Columns

a. All - Include all internal fields (PartitionKey, RowKey, and Timestamp)

b. None - Exclude all internal fields

c. RowKey - Only include the RowKey field

a. Azure Table storage filters do not support projections. If you want to only import specific Azure Table

https://msdn.microsoft.com/library/azure/ff683669.aspx

dt.exe /s:AzureTable /s.ConnectionString:"DefaultEndpointsProtocol=https;AccountName=<Account Name>;AccountKey=

<Account Key>" /s.Table:metrics /s.InternalFields:All /s.Filter:"PartitionKey eq 'Partition1' and RowKey gt

'00001'" /s.Projection:ObjectCount;ObjectSize /t:DocumentDBBulk /t.ConnectionString:" AccountEndpoint=

<DocumentDB Endpoint>;AccountKey=<DocumentDB Key>;Database=<DocumentDB Database>;" /t.Collection:metrics

/t.CollectionThroughput:2500

Import from Amazon DynamoDB

entity properties, add them to the Select Columns list. All other entity properties will be ignored.

Here is a command line sample to import from Azure Table storage:

The Amazon DynamoDB source importer option allows you to import from an individual Amazon DynamoDB

table and optionally filter the entities to be imported. Several templates are provided so that setting up an import

is as easy as possible.

ServiceURL=<Service Address>;AccessKey=<Access Key>;SecretKey=<Secret Key>;

NOTE

dt.exe /s:DynamoDB /s.ConnectionString:ServiceURL=https://dynamodb.us-east-1.amazonaws.com;AccessKey=

<accessKey>;SecretKey=<secretKey> /s.Request:"{ """TableName""": """ProductCatalog""" }" /t:DocumentDBBulk

/t.ConnectionString:"AccountEndpoint=<DocumentDB Endpoint>;AccountKey=<DocumentDB Key>;Database=<DocumentDB

Database>;" /t.Collection:catalogCollection /t.CollectionThroughput:2500

Import files from Azure Blob storage

The format of the Amazon DynamoDB connection string is:

Use the Verify command to ensure that the Amazon DynamoDB instance specified in the connection string field can be

accessed.

Here is a command line sample to import from Amazon DynamoDB:

The JSON file, MongoDB export file, and CSV file source importer options allow you to import one or more files

from Azure Blob storage. After specifying a Blob container URL and Account Key, simply provide a regular

expression to select the file(s) to import.

dt.exe /s:JsonFile /s.Files:"blobs://<account key>@account.blob.core.windows.net:443/importcontainer/.*"

/t:DocumentDBBulk /t.ConnectionString:"AccountEndpoint=<DocumentDB Endpoint>;AccountKey=<DocumentDB

Key>;Database=<DocumentDB Database>;" /t.Collection:doctest

Import from DocumentDB

Here is command line sample to import JSON files from Azure Blob storage:

The DocumentDB source importer option allows you to import data from one or more DocumentDB collections

and optionally filter documents using a query.

AccountEndpoint=<DocumentDB Endpoint>;AccountKey=<DocumentDB Key>;Database=<DocumentDB Database>;

Database=<DocumentDB Database>;

NOTE

NOTE

The format of the DocumentDB connection string is:

The DocumentDB account connection string can be retrieved from the Keys blade of the Azure portal, as

described in How to manage a DocumentDB account, however the name of the database needs to be appended

to the connection string in the following format:

Use the Verify command to ensure that the DocumentDB instance specified in the connection string field can be accessed.

To import from a single DocumentDB collection, enter the name of the collection from which data will be

imported. To import from multiple DocumentDB collections, provide a regular expression to match one or more

collection names (e.g. collection01 | collection02 | collection03). You may optionally specify, or provide a file for, a

query to both filter and shape the data to be imported.

Since the collection field accepts regular expressions, if you are importing from a single collection whose name contains

regular expression characters, then those characters must be escaped accordingly.

The DocumentDB source importer option has the following advanced options:

1. Include Internal Fields: Specifies whether or not to include DocumentDB document system properties in the

TIP

export (e.g. _rid, _ts).

2. Number of Retries on Failure: Specifies the number of times to retry the connection to DocumentDB in case of

transient failures (e.g. network connectivity interruption).

3. Retry Interval: Specifies how long to wait between retrying the connection to DocumentDB in case of transient

failures (e.g. network connectivity interruption).

4. Connection Mode: Specifies the connection mode to use with DocumentDB. The available choices are

DirectTcp, DirectHttps, and Gateway. The direct connection modes are faster, while the gateway mode is more

firewall friendly as it only uses port 443.

The import tool defaults to connection mode DirectTcp. If you experience firewall issues, switch to connection mode

Gateway, as it only requires port 443.

Here are some command line samples to import from DocumentDB:

#Migrate data from one DocumentDB collection to another DocumentDB collections

dt.exe /s:DocumentDB /s.ConnectionString:"AccountEndpoint=<DocumentDB Endpoint>;AccountKey=<DocumentDB

Key>;Database=<DocumentDB Database>;" /s.Collection:TEColl /t:DocumentDBBulk /t.ConnectionString:"

AccountEndpoint=<DocumentDB Endpoint>;AccountKey=<DocumentDB Key>;Database=<DocumentDB Database>;"

/t.Collection:TESessions /t.CollectionThroughput:2500

#Migrate data from multiple DocumentDB collections to a single DocumentDB collection

dt.exe /s:DocumentDB /s.ConnectionString:"AccountEndpoint=<DocumentDB Endpoint>;AccountKey=<DocumentDB

Key>;Database=<DocumentDB Database>;" /s.Collection:comp1|comp2|comp3|comp4 /t:DocumentDBBulk

/t.ConnectionString:"AccountEndpoint=<DocumentDB Endpoint>;AccountKey=<DocumentDB Key>;Database=<DocumentDB

Database>;" /t.Collection:singleCollection /t.CollectionThroughput:2500

#Export a DocumentDB collection to a JSON file

dt.exe /s:DocumentDB /s.ConnectionString:"AccountEndpoint=<DocumentDB Endpoint>;AccountKey=<DocumentDB

Key>;Database=<DocumentDB Database>;" /s.Collection:StoresSub /t:JsonFile /t.File:StoresExport.json

/t.Overwrite /t.CollectionThroughput:2500

TIP

Import from HBase

The DocumentDB Data Import Tool also supports import of data from the DocumentDB Emulator. When importing data

from a local emulator, set the endpoint to https://localhost:.

The HBase source importer option allows you to import data from an HBase table and optionally filter the data.

Several templates are provided so that setting up an import is as easy as possible.

https://localhost

ServiceURL=<server-address>;Username=<username>;Password=<password>

NOTE

dt.exe /s:HBase /s.ConnectionString:ServiceURL=<server-address>;Username=<username>;Password=<password>

/s.Table:Contacts /t:DocumentDBBulk /t.ConnectionString:"AccountEndpoint=<DocumentDB Endpoint>;AccountKey=

<DocumentDB Key>;Database=<DocumentDB Database>;" /t.Collection:hbaseimport

Import to DocumentDB (Bulk Import)

The format of the HBase Stargate connection string is:

Use the Verify command to ensure that the HBase instance specified in the connection string field can be accessed.

Here is a command line sample to import from HBase:

The DocumentDB Bulk importer allows you to import from any of the available source options, using a

DocumentDB stored procedure for efficiency. The tool supports import to one single-partitioned DocumentDB

collection, as well as sharded import whereby data is partitioned across multiple single-partitioned DocumentDB

collections. For more information about partitioning data, see Partitioning and scaling in Azure DocumentDB. The

tool will create, execute, and then delete the stored procedure from the target collection(s).

AccountEndpoint=<DocumentDB Endpoint>;AccountKey=<DocumentDB Key>;Database=<DocumentDB Database>;

Database=<DocumentDB Database>;

NOTE

The format of the DocumentDB connection string is:

The DocumentDB account connection string can be retrieved from the Keys blade of the Azure portal, as

described in How to manage a DocumentDB account, however the name of the database needs to be appended

to the connection string in the following format:

Use the Verify command to ensure that the DocumentDB instance specified in the connection string field can be accessed.

To import to a single collection, enter the name of the collection to which data will be imported and click the Add

button. To import to multiple collections, either enter each collection name individually or use the following

syntax to specify multiple collections: collection_prefix[start index - end index]. When specifying multiple

collections via the aforementioned syntax, keep the following in mind:

1. Only integer range name patterns are supported. For example, specifying collection[0-3] will produce the

following collections: collection0, collection1, collection2, collection3.

2. You can use an abbreviated syntax: collection[3] will emit same set of collections mentioned in step 1.

3. More than one substitution can be provided. For example, collection[0-1] [0-9] will generate 20 collection

names with leading zeros (collection01, ..02, ..03).

Once the collection name(s) have been specified, choose the desired throughput of the collection(s) (400 RUs to

10,000 RUs). For best import performance, choose a higher throughput. For more information about

performance levels, see Performance levels in DocumentDB.

NOTE

The performance throughput setting only applies to collection creation. If the specified collection already exists, its

throughput will not be modified.

When importing to multiple collections, the import tool supports hash based sharding. In this scenario, specify

the document property you wish to use as the Partition Key (if Partition Key is left blank, documents will be

sharded randomly across the target collections).

You may optionally specify which field in the import source should be used as the DocumentDB document id

property during the import (note that if documents do not contain this property, then the import tool will

generate a GUID as the id property value).

There are a number of advanced options available during import. First, while the tool includes a default bulk

import stored procedure (BulkInsert.js), you may choose to specify your own import stored procedure:

Additionally, when importing date types (e.g. from SQL Server or MongoDB), you can choose between three

import options:

String: Persist as a string value

Epoch: Persist as an Epoch number value

Both: Persist both string and Epoch number values. This option will create a subdocument, for example:

"date_joined": { "Value": "2013-10-21T21:17:25.2410000Z", "Epoch": 1382390245 }

The DocumentDB Bulk importer has the following additional advanced options:

1. Batch Size: The tool defaults to a batch size of 50. If the documents to be imported are large, consider lowering

the batch size. Conversely, if the documents to be imported are small, consider raising the batch size.

2. Max Script Size (bytes): The tool defaults to a max script size of 512KB

3. Disable Automatic Id Generation: If every document to be imported contains an id field, then selecting this

option can increase performance. Documents missing a unique id field will not be imported.

4. Update Existing Documents: The tool defaults to not replacing existing documents with id conflicts. Selecting

this option will allow overwriting existing documents with matching ids. This feature is useful for scheduled

data migrations that update existing documents.

5. Number of Retries on Failure: Specifies the number of times to retry the connection to DocumentDB in case of

transient failures (e.g. network connectivity interruption).

6. Retry Interval: Specifies how long to wait between retrying the connection to DocumentDB in case of transient

failures (e.g. network connectivity interruption).

7. Connection Mode: Specifies the connection mode to use with DocumentDB. The available choices are

DirectTcp, DirectHttps, and Gateway. The direct connection modes are faster, while the gateway mode is more

firewall friendly as it only uses port 443.

TIP

Import to DocumentDB (Sequential Record Import)

The import tool defaults to connection mode DirectTcp. If you experience firewall issues, switch to connection mode

Gateway, as it only requires port 443.

The DocumentDB sequential record importer allows you to import from any of the available source options on a

record by record basis. You might choose this option if you’re importing to an existing collection that has reached

its quota of stored procedures. The tool supports import to a single (both single-partition and multi-partition)

DocumentDB collection, as well as sharded import whereby data is partitioned across multiple single-partition

and/or multi-partition DocumentDB collections. For more information about partitioning data, see Partitioning

and scaling in Azure DocumentDB.

AccountEndpoint=<DocumentDB Endpoint>;AccountKey=<DocumentDB Key>;Database=<DocumentDB Database>;

Database=<DocumentDB Database>;

NOTE

The format of the DocumentDB connection string is:

The DocumentDB account connection string can be retrieved from the Keys blade of the Azure portal, as

described in How to manage a DocumentDB account, however the name of the database needs to be appended

to the connection string in the following format:

Use the Verify command to ensure that the DocumentDB instance specified in the connection string field can be accessed.

To import to a single collection, enter the name of the collection to which data will be imported and click the Add

button. To import to multiple collections, either enter each collection name individually or use the following

syntax to specify multiple collections: collection_prefix[start index - end index]. When specifying multiple

collections via the aforementioned syntax, keep the following in mind:

1. Only integer range name patterns are supported. For example, specifying collection[0-3] will produce the

following collections: collection0, collection1, collection2, collection3.

2. You can use an abbreviated syntax: collection[3] will emit same set of collections mentioned in step 1.

3. More than one substitution can be provided. For example, collection[0-1] [0-9] will generate 20 collection

names with leading zeros (collection01, ..02, ..03).

Once the collection name(s) have been specified, choose the desired throughput of the collection(s) (400 RUs to

250,000 RUs). For best import performance, choose a higher throughput. For more information about

NOTE

performance levels, see Performance levels in DocumentDB. Any import to collections with throughput >10,000

RUs will require a partition key. If you choose to have more than 250,000 RUs, see Request increased

DocumentDB account limits.

The throughput setting only applies to collection creation. If the specified collection already exists, its throughput will not

be modified.

When importing to multiple collections, the import tool supports hash based sharding. In this scenario, specify

the document property you wish to use as the Partition Key (if Partition Key is left blank, documents will be

sharded randomly across the target collections).

You may optionally specify which field in the import source should be used as the DocumentDB document id

property during the import (note that if documents do not contain this property, then the import tool will

generate a GUID as the id property value).

There are a number of advanced options available during import. First, when importing date types (e.g. from SQL

Server or MongoDB), you can choose between three import options:

String: Persist as a string value

Epoch: Persist as an Epoch number value

Both: Persist both string and Epoch number values. This option will create a subdocument, for example:

"date_joined": { "Value": "2013-10-21T21:17:25.2410000Z", "Epoch": 1382390245 }

The DocumentDB - Sequential record importer has the following additional advanced options:

1. Number of Parallel Requests: The tool defaults to 2 parallel requests. If the documents to be imported are

small, consider raising the number of parallel requests. Note that if this number is raised too much, the import

may experience throttling.

2. Disable Automatic Id Generation: If every document to be imported contains an id field, then selecting this

option can increase performance. Documents missing a unique id field will not be imported.

3. Update Existing Documents: The tool defaults to not replacing existing documents with id conflicts. Selecting

this option will allow overwriting existing documents with matching ids. This feature is useful for scheduled

data migrations that update existing documents.

4. Number of Retries on Failure: Specifies the number of times to retry the connection to DocumentDB in case of

transient failures (e.g. network connectivity interruption).

5. Retry Interval: Specifies how long to wait between retrying the connection to DocumentDB in case of transient

failures (e.g. network connectivity interruption).

6. Connection Mode: Specifies the connection mode to use with DocumentDB. The available choices are

DirectTcp, DirectHttps, and Gateway. The direct connection modes are faster, while the gateway mode is more

firewall friendly as it only uses port 443.

TIP

Specify an indexing policy when creating DocumentDB collections

The import tool defaults to connection mode DirectTcp. If you experience firewall issues, switch to connection mode

Gateway, as it only requires port 443.

When you allow the migration tool to create collections during import, you can specify the indexing policy of the

collections. In the advanced options section of the DocumentDB Bulk import and DocumentDB Sequential record

options, navigate to the Indexing Policy section.

Using the Indexing Policy advanced option, you can select an indexing policy file, manually enter an indexing

policy, or select from a set of default templates (by right clicking in the indexing policy textbox).

The policy templates the tool provides are:

Default. This policy is best when you’re performing equality queries against strings and using ORDER BY,

range, and equality queries for numbers. This policy has a lower index storage overhead than Range.

Range. This policy is best you’re using ORDER BY, range and equality queries on both numbers and strings.

This policy has a higher index storage overhead than Default or Hash.

NOTE

Export to JSON file

If you do not specify an indexing policy, then the default policy will be applied. For more information about indexing

policies, see DocumentDB indexing policies.

The DocumentDB JSON exporter allows you to export any of the available source options to a JSON file that

contains an array of JSON documents. The tool will handle the export for you, or you can choose to view the

resulting migration command and run the command yourself. The resulting JSON file may be stored locally or in

Azure Blob storage.

You may optionally choose to prettify the resulting JSON, which will increase the size of the resulting document

while making the contents more human readable.

Standard JSON export

[{"id":"Sample","Title":"About Paris","Language":{"Name":"English"},"Author":{"Name":"Don","Location":

{"City":"Paris","Country":"France"}},"Content":"Don's document in DocumentDB is a valid JSON document as

defined by the JSON spec.","PageViews":10000,"Topics":[{"Title":"History of Paris"},{"Title":"Places to see in

Paris"}]}]

Prettified JSON export

[

 {

"id": "Sample",

"Title": "About Paris",

"Language": {

 "Name": "English"

},

"Author": {

 "Name": "Don",

 "Location": {

 "City": "Paris",

 "Country": "France"

 }

},

"Content": "Don's document in DocumentDB is a valid JSON document as defined by the JSON spec.",

"PageViews": 10000,

"Topics": [

 {

 "Title": "History of Paris"

 },

 {

 "Title": "Places to see in Paris"

 }

]

}]

Advanced configuration

![Screenshot of Advanced configuration screen](./media/documentdb-import-data/AdvancedConfiguration.png)

Confirm import settings and view command line

In the Advanced configuration screen, specify the location of the log file to which you would like any errors

written. The following rules apply to this page:

1. If a file name is not provided, then all errors will be returned on the Results page.

2. If a file name is provided without a directory, then the file will be created (or overwritten) in the current

environment directory.

3. If you select an existing file, then the file will be overwritten, there is no append option.

Then, choose whether to log all, critical, or no error messages. Finally, decide how frequently the on screen

transfer message will be updated with its progress.

1. After specifying source information, target information, and advanced configuration, review the migration

summary and, optionally, view/copy the resulting migration command (copying the command is useful to

automate import operations):

2. Once you’re satisfied with your source and target options, click ImportImport. The elapsed time, transferred

count, and failure information (if you didn't provide a file name in the Advanced configuration) will update

as the import is in process. Once complete, you can export the results (e.g. to deal with any import

failures).

3. You may also start a new import, either keeping the existing settings (e.g. connection string information,

source and target choice, etc.) or resetting all values.

Next steps

To learn more about DocumentDB, see the Learning Path.

https://azure.microsoft.com/documentation/learning-paths/documentdb/

Kirat Pandya • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • mimig • James Dunn • James Orr • Rohan

• Stephen Baron • Ryan CrawCour

Modeling data in DocumentDB
11/15/2016 • 14 min to read • Edit on GitHub

Contributors

Embedding data

While schema-free databases, like Azure DocumentDB, make it super easy to embrace changes to your data model

you should still spend some time thinking about your data.

How is data going to be stored? How is your application going to retrieve and query data? Is your application read

heavy, or write heavy?

After reading this article, you will be able to answer the following questions:

How should I think about a document in a document database?

What is data modeling and why should I care?

How is modeling data in a document database different to a relational database?

How do I express data relationships in a non-relational database?

When do I embed data and when do I link to data?

When you start modeling data in a document store, such as DocumentDB, try to treat your entities as self-self-

contained documentscontained documents represented in JSON.

Before we dive in too much further, let us take a few steps back and have a look at how we might model

something in a relational database, a subject many of us are already familiar with. The following example shows

how a person might be stored in a relational database.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-modeling-data.md
https://github.com/kiratp
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/mimig1
https://github.com/Ja-Dunn
https://github.com/buzzcola
https://github.com/rohankapoor
https://github.com/stephbaron
https://github.com/ryancrawcour

SELECT p.FirstName, p.LastName, a.City, cd.Detail

FROM Person p

JOIN ContactDetail cd ON cd.PersonId = p.Id

JOIN ContactDetailType on cdt ON cdt.Id = cd.TypeId

JOIN Address a ON a.PersonId = p.Id

When working with relational databases, we've been taught for years to normalize, normalize, normalize.

Normalizing your data typically involves taking an entity, such as a person, and breaking it down in to discrete

pieces of data. In the example above, a person can have multiple contact detail records as well as multiple address

records. We even go one step further and break down contact details by further extracting common fields like a

type. Same for address, each record here has a type like Home or Business

The guiding premise when normalizing data is to avoid stor ing redundant dataavoid stor ing redundant data on each record and rather refer

to data. In this example, to read a person, with all their contact details and addresses, you need to use JOINS to

effectively aggregate your data at run time.

Updating a single person with their contact details and addresses requires write operations across many individual

tables.

Now let's take a look at how we would model the same data as a self-contained entity in a document database.

{

 "id": "1",

 "firstName": "Thomas",

 "lastName": "Andersen",

 "addresses": [

 {

 "line1": "100 Some Street",

 "line2": "Unit 1",

 "city": "Seattle",

 "state": "WA",

 "zip": 98012

 }

],

 "contactDetails": [

 {"email: "thomas@andersen.com"},

 {"phone": "+1 555 555-5555", "extension": 5555}

]

}

When to embed

NOTE

When not to embed

Using the approach above we have now denormalizeddenormalized the person record where we embeddedembedded all the

information relating to this person, such as their contact details and addresses, in to a single JSON document. In

addition, because we're not confined to a fixed schema we have the flexibility to do things like having contact

details of different shapes entirely.

Retrieving a complete person record from the database is now a single read operation against a single collection

and for a single document. Updating a person record, with their contact details and addresses, is also a single write

operation against a single document.

By denormalizing data, your application may need to issue fewer queries and updates to complete common

operations.

In general, use embedded data models when:

There are containscontains relationships between entities.

There are one-to-fewone-to-few relationships between entities.

There is embedded data that changes infrequentlychanges infrequently .

There is embedded data won't grow w ithout boundwithout bound.

There is embedded data that is integralintegral to data in a document.

Typically denormalized data models provide better readread performance.

While the rule of thumb in a document database is to denormalize everything and embed all data in to a single

document, this can lead to some situations that should be avoided.

Take this JSON snippet.

{

 "id": "1",

 "name": "What's new in the coolest Cloud",

 "summary": "A blog post by someone real famous",

 "comments": [

 {"id": 1, "author": "anon", "comment": "something useful, I'm sure"},

 {"id": 2, "author": "bob", "comment": "wisdom from the interwebs"},

 …

 {"id": 100001, "author": "jane", "comment": "and on we go ..."},

 …

 {"id": 1000000001, "author": "angry", "comment": "blah angry blah angry"},

 …

 {"id": ∞ + 1, "author": "bored", "comment": "oh man, will this ever end?"},
]

}

TIP

Post document:

{

 "id": "1",

 "name": "What's new in the coolest Cloud",

 "summary": "A blog post by someone real famous",

 "recentComments": [

 {"id": 1, "author": "anon", "comment": "something useful, I'm sure"},

 {"id": 2, "author": "bob", "comment": "wisdom from the interwebs"},

 {"id": 3, "author": "jane", "comment": "....."}

]

}

Comment documents:

{

 "postId": "1"

 "comments": [

 {"id": 4, "author": "anon", "comment": "more goodness"},

 {"id": 5, "author": "bob", "comment": "tails from the field"},

 ...

 {"id": 99, "author": "angry", "comment": "blah angry blah angry"}

]

},

{

 "postId": "1"

 "comments": [

 {"id": 100, "author": "anon", "comment": "yet more"},

 ...

 {"id": 199, "author": "bored", "comment": "will this ever end?"}

]

}

This might be what a post entity with embedded comments would look like if we were modeling a typical blog, or

CMS, system. The problem with this example is that the comments array is unboundedunbounded, meaning that there is no

(practical) limit to the number of comments any single post can have. This will become a problem as the size of the

document could grow significantly.

Documents in DocumentDB have a maximum size. For more on this refer to DocumentDB limits.

As the size of the document grows the ability to transmit the data over the wire as well as reading and updating

the document, at scale, will be impacted.

In this case it would be better to consider the following model.

This model has the three most recent comments embedded on the post itself, which is an array with a fixed bound

{

 "id": "1",

 "firstName": "Thomas",

 "lastName": "Andersen",

 "holdings": [

 {

 "numberHeld": 100,

 "stock": { "symbol": "zaza", "open": 1, "high": 2, "low": 0.5 }

 },

 {

 "numberHeld": 50,

 "stock": { "symbol": "xcxc", "open": 89, "high": 93.24, "low": 88.87 }

 }

]

}

Referencing data

this time. The other comments are grouped in to batches of 100 comments and stored in separate documents. The

size of the batch was chosen as 100 because our fictitious application allows the user to load 100 comments at a

time.

Another case where embedding data is not a good idea is when the embedded data is used often across

documents and will change frequently.

Take this JSON snippet.

This could represent a person's stock portfolio. We have chosen to embed the stock information in to each

portfolio document. In an environment where related data is changing frequently, like a stock trading application,

embedding data that changes frequently is going to mean that you are constantly updating each portfolio

document every time a stock is traded.

Stock zaza may be traded many hundreds of times in a single day and thousands of users could have zaza on their

portfolio. With a data model like the above we would have to update many thousands of portfolio documents

many times every day leading to a system that won't scale very well.

So, embedding data works nicely for many cases but it is clear that there are scenarios when denormalizing your

data will cause more problems than it is worth. So what do we do now?

Relational databases are not the only place where you can create relationships between entities. In a document

database you can have information in one document that actually relates to data in other documents. Now, I am

not advocating for even one minute that we build systems that would be better suited to a relational database in

DocumentDB, or any other document database, but simple relationships are fine and can be very useful.

In the JSON below we chose to use the example of a stock portfolio from earlier but this time we refer to the stock

item on the portfolio instead of embedding it. This way, when the stock item changes frequently throughout the

day the only document that needs to be updated is the single stock document.

Person document:

{

 "id": "1",

 "firstName": "Thomas",

 "lastName": "Andersen",

 "holdings": [

 { "numberHeld": 100, "stockId": 1},

 { "numberHeld": 50, "stockId": 2}

]

}

Stock documents:

{

 "id": "1",

 "symbol": "zaza",

 "open": 1,

 "high": 2,

 "low": 0.5,

 "vol": 11970000,

 "mkt-cap": 42000000,

 "pe": 5.89

},

{

 "id": "2",

 "symbol": "xcxc",

 "open": 89,

 "high": 93.24,

 "low": 88.87,

 "vol": 2970200,

 "mkt-cap": 1005000,

 "pe": 75.82

}

NOTE

What about foreign keys?

When to reference

An immediate downside to this approach though is if your application is required to show information about each

stock that is held when displaying a person's portfolio; in this case you would need to make multiple trips to the

database to load the information for each stock document. Here we've made a decision to improve the efficiency of

write operations, which happen frequently throughout the day, but in turn compromised on the read operations

that potentially have less impact on the performance of this particular system.

Normalized data models can require more round tripscan require more round trips to the server.

Because there is currently no concept of a constraint, foreign-key or otherwise, any inter-document relationships

that you have in documents are effectively "weak links" and will not be verified by the database itself. If you want

to ensure that the data a document is referring to actually exists, then you need to do this in your application, or

through the use of server-side triggers or stored procedures on DocumentDB.

In general, use normalized data models when:

Representing one-to-manyone-to-many relationships.

Representing many-to-manymany-to-many relationships.

Related data changes frequentlychanges frequently .

Referenced data could be unboundedunbounded.

NOTE

Where do I put the relationship?

Publisher document:

{

 "id": "mspress",

 "name": "Microsoft Press",

 "books": [1, 2, 3, ..., 100, ..., 1000]

}

Book documents:

{"id": "1", "name": "DocumentDB 101" }

{"id": "2", "name": "DocumentDB for RDBMS Users" }

{"id": "3", "name": "Taking over the world one JSON doc at a time" }

...

{"id": "100", "name": "Learn about Azure DocumentDB" }

...

{"id": "1000", "name": "Deep Dive in to DocumentDB" }

Publisher document:

{

 "id": "mspress",

 "name": "Microsoft Press"

}

Book documents:

{"id": "1","name": "DocumentDB 101", "pub-id": "mspress"}

{"id": "2","name": "DocumentDB for RDBMS Users", "pub-id": "mspress"}

{"id": "3","name": "Taking over the world one JSON doc at a time"}

...

{"id": "100","name": "Learn about Azure DocumentDB", "pub-id": "mspress"}

...

{"id": "1000","name": "Deep Dive in to DocumentDB", "pub-id": "mspress"}

How do I model many:many relationships?

Typically normalizing provides better writewrite performance.

The growth of the relationship will help determine in which document to store the reference.

If we look at the JSON below that models publishers and books.

If the number of the books per publisher is small with limited growth, then storing the book reference inside the

publisher document may be useful. However, if the number of books per publisher is unbounded, then this data

model would lead to mutable, growing arrays, as in the example publisher document above.

Switching things around a bit would result in a model that still represents the same data but now avoids these

large mutable collections.

In the above example, we have dropped the unbounded collection on the publisher document. Instead we just have

a a reference to the publisher on each book document.

In a relational database many:many relationships are often modeled with join tables, which just join records from

other tables together.

Author documents:

{"id": "a1", "name": "Thomas Andersen" }

{"id": "a2", "name": "William Wakefield" }

Book documents:

{"id": "b1", "name": "DocumentDB 101" }

{"id": "b2", "name": "DocumentDB for RDBMS Users" }

{"id": "b3", "name": "Taking over the world one JSON doc at a time" }

{"id": "b4", "name": "Learn about Azure DocumentDB" }

{"id": "b5", "name": "Deep Dive in to DocumentDB" }

Joining documents:

{"authorId": "a1", "bookId": "b1" }

{"authorId": "a2", "bookId": "b1" }

{"authorId": "a1", "bookId": "b2" }

{"authorId": "a1", "bookId": "b3" }

Author documents:

{"id": "a1", "name": "Thomas Andersen", "books": ["b1, "b2", "b3"]}

{"id": "a2", "name": "William Wakefield", "books": ["b1", "b4"]}

Book documents:

{"id": "b1", "name": "DocumentDB 101", "authors": ["a1", "a2"]}

{"id": "b2", "name": "DocumentDB for RDBMS Users", "authors": ["a1"]}

{"id": "b3", "name": "Learn about Azure DocumentDB", "authors": ["a1"]}

{"id": "b4", "name": "Deep Dive in to DocumentDB", "authors": ["a2"]}

Hybrid data models

You might be tempted to replicate the same thing using documents and produce a data model that looks similar to

the following.

This would work. However, loading either an author with their books, or loading a book with its author, would

always require at least two additional queries against the database. One query to the joining document and then

another query to fetch the actual document being joined.

If all this join table is doing is gluing together two pieces of data, then why not drop it completely? Consider the

following.

Now, if I had an author, I immediately know which books they have written, and conversely if I had a book

document loaded I would know the ids of the author(s). This saves that intermediary query against the join table

reducing the number of server round trips your application has to make.

We've now looked embedding (or denormalizing) and referencing (or normalizing) data, each have their upsides

and each have compromises as we have seen.

It doesn't always have to be either or, don't be scared to mix things up a little.

Based on your application's specific usage patterns and workloads there may be cases where mixing embedded

and referenced data makes sense and could lead to simpler application logic with fewer server round trips while

still maintaining a good level of performance.

Author documents:

{

 "id": "a1",

 "firstName": "Thomas",

 "lastName": "Andersen",

 "countOfBooks": 3,

 "books": ["b1", "b2", "b3"],

 "images": [

 {"thumbnail": "http://....png"}

 {"profile": "http://....png"}

 {"large": "http://....png"}

]

},

{

 "id": "a2",

 "firstName": "William",

 "lastName": "Wakefield",

 "countOfBooks": 1,

 "books": ["b1"],

 "images": [

 {"thumbnail": "http://....png"}

]

}

Book documents:

{

 "id": "b1",

 "name": "DocumentDB 101",

 "authors": [

 {"id": "a1", "name": "Thomas Andersen", "thumbnailUrl": "http://....png"},

 {"id": "a2", "name": "William Wakefield", "thumbnailUrl": "http://....png"}

]

},

{

 "id": "b2",

 "name": "DocumentDB for RDBMS Users",

 "authors": [

 {"id": "a1", "name": "Thomas Andersen", "thumbnailUrl": "http://....png"},

]

}

Consider the following JSON.

Here we've (mostly) followed the embedded model, where data from other entities are embedded in the top-level

document, but other data is referenced.

If you look at the book document, we can see a few interesting fields when we look at the array of authors. There is

an id field which is the field we use to refer back to an author document, standard practice in a normalized model,

but then we also have name and thumbnailUrl. We could've just stuck with id and left the application to get any

additional information it needed from the respective author document using the "link", but because our application

displays the author's name and a thumbnail picture with every book displayed we can save a round trip to the

server per book in a list by denormalizing somesome data from the author.

Sure, if the author's name changed or they wanted to update their photo we'd have to go an update every book

they ever published but for our application, based on the assumption that authors don't change their names very

often, this is an acceptable design decision.

In the example there are pre-calculated aggregatespre-calculated aggregates values to save expensive processing on a read operation. In

the example, some of the data embedded in the author document is data that is calculated at run-time. Every time

a new book is published, a book document is created andand the countOfBooks field is set to a calculated value based

on the number of book documents that exist for a particular author. This optimization would be good in read

heavy systems where we can afford to do computations on writes in order to optimize reads.

 Next steps

The ability to have a model with pre-calculated fields is made possible because DocumentDB supports multi-multi-

document transactionsdocument transactions . Many NoSQL stores cannot do transactions across documents and therefore advocate

design decisions, such as "always embed everything", due to this limitation. With DocumentDB, you can use server-

side triggers, or stored procedures, that insert books and update authors all within an ACID transaction. Now you

don't havehave to embed everything in to one document just to be sure that your data remains consistent.

The biggest takeaways from this article is to understand that data modeling in a schema-free world is just as

important as ever.

Just as there is no single way to represent a piece of data on a screen, there is no single way to model your data.

You need to understand your application and how it will produce, consume, and process the data. Then, by

applying some of the guidelines presented here you can set about creating a model that addresses the immediate

needs of your application. When your applications need to change, you can leverage the flexibility of a schema-free

database to embrace that change and evolve your data model easily.

To learn more about Azure DocumentDB, refer to the service's documentation page.

To learn about tuning indexes in Azure DocumentDB, refer to the article on indexing policies.

To understand how to shard your data across multiple partitions, refer to Partitioning Data in DocumentDB.

And finally, for guidance on modeling data and sharding for multi-tenant applications, consult Scaling a Multi-

Tenant Application with Azure DocumentDB.

https://azure.microsoft.com/documentation/services/documentdb/
http://blogs.msdn.com/b/documentdb/archive/2014/12/03/scaling-a-multi-tenant-application-with-azure-documentdb.aspx

arramac • mimig • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • Ross McAllister • Dave • v-aljenk • jastru

Working with Geospatial data in Azure DocumentDB
11/22/2016 • 11 min to read • Edit on GitHub

Contributors

Introduction to spatial data

GeoJSON

Points, LineStrings and Polygons

{

 "type":"Point",

 "coordinates":[31.9, -4.8]

}

NOTE

This article is an introduction to the geospatial functionality in Azure DocumentDB. After reading this, you will be

able to answer the following questions:

How do I store spatial data in Azure DocumentDB?

How can I query geospatial data in Azure DocumentDB in SQL and LINQ?

How do I enable or disable spatial indexing in DocumentDB?

Please see this Github project for code samples.

Spatial data describes the position and shape of objects in space. In most applications, these correspond to objects

on the earth, i.e. geospatial data. Spatial data can be used to represent the location of a person, a place of interest,

or the boundary of a city, or a lake. Common use cases often involve proximity queries, for e.g., "find all coffee

shops near my current location".

DocumentDB supports indexing and querying of geospatial point data that's represented using the GeoJSON

specification. GeoJSON data structures are always valid JSON objects, so they can be stored and queried using

DocumentDB without any specialized tools or libraries. The DocumentDB SDKs provide helper classes and methods

that make it easy to work with spatial data.

A PointPoint denotes a single position in space. In geospatial data, a Point represents the exact location, which could be

a street address of a grocery store, a kiosk, an automobile or a city. A point is represented in GeoJSON (and

DocumentDB) using its coordinate pair or longitude and latitude. Here's an example JSON for a point.

Points in DocumentDBPoints in DocumentDB

The GeoJSON specification specifies longitude first and latitude second. Like in other mapping applications, longitude and

latitude are angles and represented in terms of degrees. Longitude values are measured from the Prime Meridian and are

between -180 and 180.0 degrees, and latitude values are measured from the equator and are between -90.0 and 90.0

degrees.

DocumentDB interprets coordinates as represented per the WGS-84 reference system. Please see below for more details

about coordinate reference systems.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-geospatial.md
https://github.com/arramac
https://github.com/mimig1
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/rmca14
https://github.com/davenewza
https://github.com/v-aljenk
https://github.com/jastru
https://azure.microsoft.com/services/documentdb/
https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/code-samples/Geospatial/Program.cs
http://geojson.org/geojson-spec.html

{

 "id":"documentdb-profile",

 "screen_name":"@DocumentDB",

 "city":"Redmond",

 "topics":["NoSQL", "Javascript"],

 "location":{

 "type":"Point",

 "coordinates":[31.9, -4.8]

 }

}

{

 "type":"Polygon",

 "coordinates":[

 [31.8, -5],

 [31.8, -4.7],

 [32, -4.7],

 [32, -5],

 [31.8, -5]

]

}

NOTE

Coordinate reference systems

Creating documents with spatial data

This can be embedded in a DocumentDB document as shown in this example of a user profile containing location

data:

Use Profi le w ith Location stored in DocumentDBUse Profi le w ith Location stored in DocumentDB

In addition to points, GeoJSON also supports LineStrings and Polygons. L ineStr ingsL ineStr ings represent a series of two or

more points in space and the line segments that connect them. In geospatial data, LineStrings are commonly used

to represent highways or rivers. A PolygonPolygon is a boundary of connected points that forms a closed LineString.

Polygons are commonly used to represent natural formations like lakes or political jurisdictions like cities and

states. Here's an example of a Polygon in DocumentDB.

Polygons in DocumentDBPolygons in DocumentDB

The GeoJSON specification requires that for valid Polygons, the last coordinate pair provided should be the same as the first,

to create a closed shape.

Points within a Polygon must be specified in counter-clockwise order. A Polygon specified in clockwise order represents the

inverse of the region within it.

In addition to Point, LineString and Polygon, GeoJSON also specifies the representation for how to group multiple

geospatial locations, as well as how to associate arbitrary properties with geolocation as a FeatureFeature. Since these

objects are valid JSON, they can all be stored and processed in DocumentDB. However DocumentDB only supports

automatic indexing of points.

Since the shape of the earth is irregular, coordinates of geospatial data is represented in many coordinate reference

systems (CRS), each with their own frames of reference and units of measurement. For example, the "National Grid

of Britain" is a reference system is very accurate for the United Kingdom, but not outside it.

The most popular CRS in use today is the World Geodetic System WGS-84. GPS devices, and many mapping

services including Google Maps and Bing Maps APIs use WGS-84. DocumentDB supports indexing and querying of

geospatial data using the WGS-84 CRS only.

http://earth-info.nga.mil/GandG/wgs84/

var userProfileDocument = {

 "name":"documentdb",

 "location":{

 "type":"Point",

 "coordinates":[-122.12, 47.66]

 }

};

client.createDocument(`dbs/${databaseName}/colls/${collectionName}`, userProfileDocument, (err, created) => {

 // additional code within the callback

});

using Microsoft.Azure.Documents.Spatial;

public class UserProfile

{

 [JsonProperty("name")]

 public string Name { get; set; }

 [JsonProperty("location")]

 public Point Location { get; set; }

 // More properties

}

await client.CreateDocumentAsync(

 UriFactory.CreateDocumentCollectionUri("db", "profiles"),

 new UserProfile

 {

 Name = "documentdb",

 Location = new Point (-122.12, 47.66)

 });

Querying spatial types

Spatial SQL built-in functions

UsageUsage DescriptionDescription

When you create documents that contain GeoJSON values, they are automatically indexed with a spatial index in

accordance to the indexing policy of the collection. If you're working with a DocumentDB SDK in a dynamically

typed language like Python or Node.js, you must create valid GeoJSON.

Create Document w ith Geospatial data in Node.jsCreate Document w ith Geospatial data in Node.js

If you're working with the .NET (or Java) SDKs, you can use the new Point and Polygon classes within the

Microsoft.Azure.Documents.Spatial namespace to embed location information within your application objects.

These classes help simplify the serialization and deserialization of spatial data into GeoJSON.

Create Document w ith Geospatial data in .NETCreate Document w ith Geospatial data in .NET

If you don't have the latitude and longitude information, but have the physical addresses or location name like city

or country, you can look up the actual coordinates by using a geocoding service like Bing Maps REST Services.

Learn more about Bing Maps geocoding here.

Now that we've taken a look at how to insert geospatial data, let's take a look at how to query this data using

DocumentDB using SQL and LINQ.

DocumentDB supports the following Open Geospatial Consortium (OGC) built-in functions for geospatial querying.

For more details on the complete set of built-in functions in the SQL language, please refer to Query DocumentDB.

https://msdn.microsoft.com/library/ff701713.aspx

ST_DISTANCE (spatial_expr, spatial_expr) Returns the distance between the two GeoJSON Point,
Polygon, or LineString expressions.

ST_WITHIN (spatial_expr, spatial_expr) Returns a Boolean expression indicating whether the first
GeoJSON object (Point, Polygon, or LineString) is within the
second GeoJSON object (Point, Polygon, or LineString).

ST_INTERSECTS (spatial_expr, spatial_expr) Returns a Boolean expression indicating whether the two
specified GeoJSON objects (Point, Polygon, or LineString)
intersect.

ST_ISVALID Returns a Boolean value indicating whether the specified
GeoJSON Point, Polygon, or LineString expression is valid.

ST_ISVALIDDETAILED Returns a JSON value containing a Boolean value if the
specified GeoJSON Point, Polygon, or LineString expression is
valid, and if invalid, additionally the reason as a string value.

SELECT f.id

FROM Families f

WHERE ST_DISTANCE(f.location, {'type': 'Point', 'coordinates':[31.9, -4.8]}) < 30000

[{

 "id": "WakefieldFamily"

}]

SELECT *

FROM Families f

WHERE ST_WITHIN(f.location, {

 'type':'Polygon',

 'coordinates': [[[31.8, -5], [32, -5], [32, -4.7], [31.8, -4.7], [31.8, -5]]]

})

Spatial functions can be used to perform proximity queries against spatial data. For example, here's a query that

returns all family documents that are within 30 km of the specified location using the ST_DISTANCE built-in

function.

QueryQuery

ResultsResults

If you include spatial indexing in your indexing policy, then "distance queries" will be served efficiently through the

index. For more details on spatial indexing, please see the section below. If you don't have a spatial index for the

specified paths, you can still perform spatial queries by specifying x-ms-documentdb-query-enable-scan request

header with the value set to "true". In .NET, this can be done by passing the optional FeedOptionsFeedOptions argument to

queries with EnableScanInQuery set to true.

ST_WITHIN can be used to check if a point lies within a Polygon. Commonly Polygons are used to represent

boundaries like zip codes, state boundaries, or natural formations. Again if you include spatial indexing in your

indexing policy, then "within" queries will be served efficiently through the index.

Polygon arguments in ST_WITHIN can contain only a single ring, i.e. the Polygons must not contain holes in them.

QueryQuery

ResultsResults

https://msdn.microsoft.com/library/microsoft.azure.documents.client.feedoptions.enablescaninquery.aspx#P:Microsoft.Azure.Documents.Client.FeedOptions.EnableScanInQuery

[{

 "id": "WakefieldFamily",

}]

NOTE

SELECT *

FROM Areas a

WHERE ST_WITHIN({'type': 'Point', 'coordinates':[31.9, -4.8]}, a.location)

[{

 "id": "MyDesignatedLocation",

 "location": {

 "type":"Polygon",

 "coordinates": [[[31.8, -5], [32, -5], [32, -4.7], [31.8, -4.7], [31.8, -5]]]

 }

}]

SELECT ST_ISVALID({ "type": "Point", "coordinates": [31.9, -132.8] })

[{

 "$1": false

}]

SELECT ST_ISVALIDDETAILED({ "type": "Polygon", "coordinates": [[

 [31.8, -5], [31.8, -4.7], [32, -4.7], [32, -5]

]]})

Similar to how mismatched types works in DocumentDB query, if the location value specified in either argument is malformed

or invalid, then it will evaluate to undefinedundefined and the evaluated document to be skipped from the query results. If your query

returns no results, run ST_ISVALIDDETAILED To debug why the spatail type is invalid.

DocumentDB also supports performing inverse queries, i.e. you can index Polygons or lines in DocumentDB, then

query for the areas that contain a specified point. This pattern is commonly used in logistics to identify e.g. when a

truck enters or leaves a designated area.

QueryQuery

ResultsResults

ST_ISVALID and ST_ISVALIDDETAILED can be used to check if a spatial object is valid. For example, the following

query checks the validity of a point with an out of range latitude value (-132.8). ST_ISVALID returns just a Boolean

value, and ST_ISVALIDDETAILED returns the Boolean and a string containing the reason why it is considered

invalid.

** Query **

ResultsResults

These functions can also be used to validate Polygons. For example, here we use ST_ISVALIDDETAILED to validate a

Polygon that is not closed.

QueryQuery

ResultsResults

[{

 "$1": {

 "valid": false,

 "reason": "The Polygon input is not valid because the start and end points of the ring number 1 are not

the same. Each ring of a Polygon must have the same start and end points."

 }

}]

LINQ Querying in the .NET SDK

foreach (UserProfile user in client.CreateDocumentQuery<UserProfile>

(UriFactory.CreateDocumentCollectionUri("db", "profiles"))

 .Where(u => u.ProfileType == "Public" && a.Location.Distance(new Point(32.33, -4.66)) < 30000))

{

 Console.WriteLine("\t" + user);

}

Polygon rectangularArea = new Polygon(

 new[]

 {

 new LinearRing(new [] {

 new Position(31.8, -5),

 new Position(32, -5),

 new Position(32, -4.7),

 new Position(31.8, -4.7),

 new Position(31.8, -5)

 })

 });

foreach (UserProfile user in client.CreateDocumentQuery<UserProfile>

(UriFactory.CreateDocumentCollectionUri("db", "profiles"))

 .Where(a => a.Location.Within(rectangularArea)))

{

 Console.WriteLine("\t" + user);

}

Indexing

The DocumentDB .NET SDK also providers stub methods Distance() and Within() for use within LINQ

expressions. The DocumentDB LINQ provider translates these method calls to the equivalent SQL built-in function

calls (ST_DISTANCE and ST_WITHIN respectively).

Here's an example of a LINQ query that finds all documents in the DocumentDB collection whose "location" value

is within a radius of 30km of the specified point using LINQ.

L INQ query for DistanceL INQ query for Distance

Similarly, here's a query for finding all the documents whose "location" is within the specified box/Polygon.

L INQ query for WithinL INQ query for Within

Now that we've taken a look at how to query documents using LINQ and SQL, let's take a look at how to configure

DocumentDB for spatial indexing.

As we described in the Schema Agnostic Indexing with Azure DocumentDB paper, we designed DocumentDB’s

database engine to be truly schema agnostic and provide first class support for JSON. The write optimized

database engine of DocumentDB natively understands spatial data (points, Polygons and lines) represented in the

GeoJSON standard.

In a nutshell, the geometry is projected from geodetic coordinates onto a 2D plane then divided progressively into

cells using a quadtreequadtree. These cells are mapped to 1D based on the location of the cell within a Hilbert spaceHilbert space

http://www.vldb.org/pvldb/vol8/p1668-shukla.pdf

NOTE

{

 "automatic":true,

 "indexingMode":"Consistent",

 "includedPaths":[

 {

 "path":"/*",

 "indexes":[

 {

 "kind":"Range",

 "dataType":"String",

 "precision":-1

 },

 {

 "kind":"Range",

 "dataType":"Number",

 "precision":-1

 },

 {

 "kind":"Spatial",

 "dataType":"Point"

 },

 {

 "kind":"Spatial",

 "dataType":"Polygon"

 }

]

 }

],

 "excludedPaths":[

]

}

DocumentCollection spatialData = new DocumentCollection()

spatialData.IndexingPolicy = new IndexingPolicy(new SpatialIndex(DataType.Point)); //override to turn spatial on

by default

collection = await client.CreateDocumentCollectionAsync(UriFactory.CreateDatabaseUri("db"), spatialData);

fi l l ing curvefi l l ing curve, which preserves locality of points. Additionally when location data is indexed, it goes through a

process known as tessellationtessellation , i.e. all the cells that intersect a location are identified and stored as keys in the

DocumentDB index. At query time, arguments like points and Polygons are also tessellated to extract the relevant

cell ID ranges, then used to retrieve data from the index.

If you specify an indexing policy that includes spatial index for /* (all paths), then all points found within the

collection are indexed for efficient spatial queries (ST_WITHIN and ST_DISTANCE). Spatial indexes do not have a

precision value, and always use a default precision value.

DocumentDB supports automatic indexing of Points, Polygons, and LineStrings

The following JSON snippet shows an indexing policy with spatial indexing enabled, i.e. index any GeoJSON point

found within documents for spatial querying. If you are modifying the indexing policy using the Azure Portal, you

can specify the following JSON for indexing policy to enable spatial indexing on your collection.

Collection Indexing Policy JSON w ith Spatial enabled for points and PolygonsCollection Indexing Policy JSON w ith Spatial enabled for points and Polygons

Here's a code snippet in .NET that shows how to create a collection with spatial indexing turned on for all paths

containing points.

Create a collection w ith spatial indexingCreate a collection w ith spatial indexing

Console.WriteLine("Updating collection with spatial indexing enabled in indexing policy...");

collection.IndexingPolicy = new IndexingPolicy(new SpatialIndex(DataType.Point));

await client.ReplaceDocumentCollectionAsync(collection);

Console.WriteLine("Waiting for indexing to complete...");

long indexTransformationProgress = 0;

while (indexTransformationProgress < 100)

{

 ResourceResponse<DocumentCollection> response = await

client.ReadDocumentCollectionAsync(UriFactory.CreateDocumentCollectionUri("db", "coll"));

 indexTransformationProgress = response.IndexTransformationProgress;

 await Task.Delay(TimeSpan.FromSeconds(1));

}

NOTE

Next steps

And here's how you can modify an existing collection to take advantage of spatial indexing over any points that are

stored within documents.

Modify an existing collection w ith spatial indexingModify an existing collection w ith spatial indexing

If the location GeoJSON value within the document is malformed or invalid, then it will not get indexed for spatial querying.

You can validate location values using ST_ISVALID and ST_ISVALIDDETAILED.

If your collection definition includes a partition key, indexing transformation progress is not reported.

Now that you've learnt about how to get started with geospatial support in DocumentDB, you can:

Start coding with the Geospatial .NET code samples on Github

Get hands on with geospatial querying at the DocumentDB Query Playground

Learn more about DocumentDB Query

Learn more about DocumentDB Indexing Policies

https://github.com/Azure/azure-documentdb-dotnet/blob/fcf23d134fc5019397dcf7ab97d8d6456cd94820/samples/code-samples/Geospatial/Program.cs
http://www.documentdb.com/sql/demo#geospatial

Kirat Pandya • Theano Petersen • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • arramac • mimig • Matt Scully

Developing with multi-region DocumentDB accounts
11/15/2016 • 4 min to read • Edit on GitHub

Contributors

NOTE

.NET SDK

Global distribution of DocumentDB databases is generally available and automatically enabled for any newly created

DocumentDB accounts. We are working to enable global distribution on all existing accounts, but in the interim, if you want

global distribution enabled on your account, please contact support and we’ll enable it for you now.

In order to take advantage of global distribution, client applications can specify the ordered preference list of

regions to be used to perform document operations. This can be done by setting the connection policy. Based on

the Azure DocumentDB account configuration, current regional availability and the preference list specified, the

most optimal endpoint will be chosen by the SDK to perform write and read operations.

This preference list is specified when initializing a connection using the DocumentDB client SDKs. The SDKs accept

an optional parameter "PreferredLocations" that is an ordered list of Azure regions.

The SDK will automatically send all writes to the current write region.

All reads will be sent to the first available region in the PreferredLocations list. If the request fails, the client will fail

down the list to the next region, and so on.

The client SDKs will only attempt to read from the regions specified in PreferredLocations. So, for example, if the

Database Account is available in three regions, but the client only specifies two of the non-write regions for

PreferredLocations, then no reads will be served out of the write region, even in the case of failover.

The application can verify the current write endpoint and read endpoint chosen by the SDK by checking two

properties, WriteEndpoint and ReadEndpoint, available in SDK version 1.8 and above.

If the PreferredLocations property is not set, all requests will be served from the current write region.

The SDK can be used without any code changes. In this case, the SDK automatically directs both reads and writes

to the current write region.

In version 1.8 and later of the .NET SDK, the ConnectionPolicy parameter for the DocumentClient constructor has a

property called Microsoft.Azure.Documents.ConnectionPolicy.PreferredLocations. This property is of type

Collection <string> and should contain a list of region names. The string values are formatted per the Region

Name column on the Azure Regions page, with no spaces before or after the first and last character respectively.

The current write and read endpoints are available in DocumentClient.WriteEndpoint and

DocumentClient.ReadEndpoint respectively.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-developing-with-multiple-regions.md
https://github.com/kiratp
https://github.com/v-thepet
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/arramac
https://github.com/mimig1
https://github.com/mattscully
https://portal.azure.com/?#blade/Microsoft_Azure_Support/HelpAndSupportBlade
https://azure.microsoft.com/regions/

NOTE

// Getting endpoints from application settings or other configuration location

Uri accountEndPoint = new Uri(Properties.Settings.Default.GlobalDatabaseUri);

string accountKey = Properties.Settings.Default.GlobalDatabaseKey;

//Setting read region selection preference

connectionPolicy.PreferredLocations.Add(LocationNames.WestUS); // first preference

connectionPolicy.PreferredLocations.Add(LocationNames.EastUS); // second preference

connectionPolicy.PreferredLocations.Add(LocationNames.NorthEurope); // third preference

// initialize connection

DocumentClient docClient = new DocumentClient(

 accountEndPoint,

 accountKey,

 connectionPolicy);

// connect to DocDB

await docClient.OpenAsync().ConfigureAwait(false);

NodeJS, JavaScript, and Python SDKs

NOTE

// Creating a ConnectionPolicy object

var connectionPolicy = new DocumentBase.ConnectionPolicy();

// Setting read region selection preference, in the following order -

// 1 - West US

// 2 - East US

// 3 - North Europe

connectionPolicy.PreferredLocations = ['West US', 'East US', 'North Europe'];

// initialize the connection

var client = new DocumentDBClient(host, { masterKey: masterKey }, connectionPolicy);

REST

The URLs for the endpoints should not be considered as long-lived constants. The service may update these at any point.

The SDK handles this change automatically.

The SDK can be used without any code changes. In this case, the SDK will automatically direct both reads and

writes to the current write region.

In version 1.8 and later of each SDK, the ConnectionPolicy parameter for the DocumentClient constructor a new

property called DocumentClient.ConnectionPolicy.PreferredLocations. This is parameter is an array of strings that

takes a list of region names. The names are formatted per the Region Name column in the Azure Regions page.

You can also use the predefined constants in the convenience object AzureDocuments.Regions

The current write and read endpoints are available in DocumentClient.getWriteEndpoint and

DocumentClient.getReadEndpoint respectively.

The URLs for the endpoints should not be considered as long-lived constants. The service may update these at any point.

The SDK will handle this change automatically.

Below is a code example for NodeJS/Javascript. Python and Java will follow the same pattern.

https://azure.microsoft.com/regions/

https://{databaseaccount}.documents.azure.com/

{

 "_dbs": "//dbs/",

 "media": "//media/",

 "writableLocations": [

 {

 "Name": "West US",

 "DatabaseAccountEndpoint": "https://globaldbexample-westus.documents.azure.com:443/"

 }

],

 "readableLocations": [

 {

 "Name": "East US",

 "DatabaseAccountEndpoint": "https://globaldbexample-eastus.documents.azure.com:443/"

 }

],

 "MaxMediaStorageUsageInMB": 2048,

 "MediaStorageUsageInMB": 0,

 "ConsistencyPolicy": {

 "defaultConsistencyLevel": "Session",

 "maxStalenessPrefix": 100,

 "maxIntervalInSeconds": 5

 },

 "addresses": "//addresses/",

 "id": "globaldbexample",

 "_rid": "globaldbexample.documents.azure.com",

 "_self": "",

 "_ts": 0,

 "_etag": null

}

Next steps

Once a database account has been made available in multiple regions, clients can query its availability by

performing a GET request on the following URI.

The service will return a list of regions and their corresponding DocumentDB endpoint URIs for the replicas. The

current write region will be indicated in the response. The client can then select the appropriate endpoint for all

further REST API requests as follows.

Example response

All PUT, POST and DELETE requests must go to the indicated write URI

All GETs and other read-only requests (for example queries) may go to any endpoint of the client’s choice

Write requests to read-only regions will fail with HTTP error code 403 (“Forbidden”).

If the write region changes after the client’s initial discovery phase, subsequent writes to the previous write region

will fail with HTTP error code 403 (“Forbidden”). The client should then GET the list of regions again to get the

updated write region.

Learn more about the distributing data globally with DocumentDB in the following articles:

Distribute data globally with DocumentDB

Consistency levels

How throughput works with multiple regions

Add regions using the Azure portal

Kirat Pandya • mimig • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil

Expire data in DocumentDB collections automatically
with time to live
11/22/2016 • 6 min to read • Edit on GitHub

Contributors

TTL behavior

DEFAULTTTL MISSING/NOTDEFAULTTTL MISSING/NOT
SET ON THE COLLECTIONSET ON THE COLLECTION

DEFAULTTTL = -1 ONDEFAULTTTL = -1 ON
COLLECTIONCOLLECTION

DEFAULTTTL = "N" ONDEFAULTTTL = "N" ON
COLLECTIONCOLLECTION

TTL Missing on document Nothing to override at
document level since both
the document and collection
have no concept of TTL.

No documents in this
collection will expire.

The documents in this
collection will expire when
interval n elapses.

Applications can produce and store vast amounts of data. Some of this data, like machine generated event data,

logs, and user session information is only useful for a finite period of time. Once the data becomes surplus to the

needs of the application it is safe to purge this data and reduce the storage needs of an application.

With “time to live” or TTL, Microsoft Azure DocumentDB provides the ability to have documents automatically

purged from the database after a period of time. The default time to live can be set at the collection level, and

overridden on a per-document basis. Once TTL is set, either as a collection default or at a document level,

DocumentDB will automatically remove documents that exist after that period of time, in seconds, since they were

last modified.

Time to live in DocumentDB uses an offset against when the document was last modified. To do this it uses the _ts

field which exists on every document. The _ts field is a unix-style epoch timestamp representing the date and time.

The _ts field is updated every time a document is modified.

The TTL feature is controlled by TTL properties at two levels - the collection level and the document level. The values

are set in seconds and are treated as a delta from the _ts that the document was last modified at.

1. DefaultTTL for the collection

If missing (or set to null), documents are not deleted automatically.

If present and the value is “-1” = infinite – documents don’t expire by default

If present and the value is some number (“n”) – documents expire “n” seconds after last modification

2. TTL for the documents:

Property is applicable only if DefaultTTL is present for the parent collection.

Overrides the DefaultTTL value for the parent collection.

As soon as the document has expired (ttl + _ts >= current server time), the document is marked as “expired”. No

operation will be allowed on these documents after this time and they will be excluded from the results of any

queries performed. The documents are physically deleted in the system, and are deleted in the background

opportunistically at a later time. This does not consume any Request Units (RUs) from the collection budget.

The above logic can be shown in the following matrix:

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-time-to-live.md
https://github.com/kiratp
https://github.com/mimig1
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn

TTL = -1 on document Nothing to override at the
document level since the
collection doesn’t define the
DefaultTTL property that a
document can override. TTL
on a document is un-
interpreted by the system.

No documents in this
collection will expire.

The document with TTL=-1
in this collection will never
expire. All other documents
will expire after "n" interval.

TTL = n on document Nothing to override at the
document level. TTL on a
document in un-interpreted
by the system.

The document with TTL = n
will expire after interval n, in
seconds. Other documents
will inherit interval of -1 and
never expire.

The document with TTL = n
will expire after interval n, in
seconds. Other documents
will inherit "n" interval from
the collection.

DEFAULTTTL MISSING/NOTDEFAULTTTL MISSING/NOT
SET ON THE COLLECTIONSET ON THE COLLECTION

DEFAULTTTL = -1 ONDEFAULTTTL = -1 ON
COLLECTIONCOLLECTION

DEFAULTTTL = "N" ONDEFAULTTTL = "N" ON
COLLECTIONCOLLECTION

Configuring TTL

Enabling TTL

Configuring default TTL on a collection

Setting TTL on a document

Extending TTL on an existing document

By default, time to live is disabled by default in all DocumentDB collections and on all documents.

To enable TTL on a collection, or the documents within a collection, you need to set the DefaultTTL property of a

collection to either -1 or a non-zero positive number. Setting the DefaultTTL to -1 means that by default all

documents in the collection will live forever but the DocumentDB service should monitor this collection for

documents that have overridden this default.

You are able to configure a default time to live at a collection level.

To set the TTL on a collection, you need to provide a non-zero positive number that indicates the period, in seconds,

to expire all documents in the collection after the last modified timestamp of the document (_ts).

Or, you can set the default to -1, which implies that all documents inserted in to the collection will live indefinitely

by default.

In addition to setting a default TTL on a collection you can set specific TTL at a document level. Doing this will

override the default of the collection.

To set the TTL on a document, you need to provide a non-zero positive number which indicates the period, in

seconds, to expire the document after the last modified timestamp of the document (_ts).

To set this expiry offset, set the TTL field on the document.

If a document has no TTL field, then the default of the collection will apply.

If TTL is disabled at the collection level, the TTL field on the document will be ignored until TTL is enabled again on

the collection.

You can reset the TTL on a document by doing any write operation on the document. Doing this will set the _ts to

the current time, and the countdown to the document expiry, as set by the ttl, will begin again.

Removing TTL from a document

Disabling TTL

FAQ

Next steps

If you wish to change the ttl of a document, you can update the field as you can do with any other settable field.

If a TTL has been set on a document and you no longer want that document to expire, then you can retrieve the

document, remove the TTL field and replace the document on the server.

When the TTL field is removed from the document, the default of the collection will be applied.

To stop a document from expiring and not inherit from the collection then you need to set the TTL value to -1.

To disable TTL entirely on a collection and stop the background process from looking for expired documents the

DefaultTTL property on the collection should be deleted.

Deleting this property is different from setting it to -1. Setting to -1 means new documents added to the collection

will live forever but you can override this on specific documents in the collection.

Removing this property entirely from the collection means that no documents will expire, even if there are

documents that have explicitly overridden a previous default.

What w il l TTL cost me?What w il l TTL cost me?

There is no additional cost to setting a TTL on a document.

How long w il l it take to delete my document once the TTL is up?How long w il l it take to delete my document once the TTL is up?

The documents are expired immediately once the TTL is up, and will not be accessible via CRUD or query APIs.

Will TTL on a document have any impact on RU charges?Will TTL on a document have any impact on RU charges?

No, there will be no impact on RU charges for deletions of expired documents via TTL in DocumentDB.

Does the TTL feature only apply to entire documents , or can I expire indiv idual document propertyDoes the TTL feature only apply to entire documents , or can I expire indiv idual document property

values?values?

TTL applies to the entire document. If you would like to expire just a portion of a document, then it is recommended

that you extract the portion from the main document in to a separate “linked” document and then use TTL on that

extracted document.

Does the TTL feature have any specific indexing requirements?Does the TTL feature have any specific indexing requirements?

Yes. The collection must have indexing policy set to either Consistent or Lazy. Trying to set DefaultTTL on a

collection with indexing set to None will result in an error, as will trying to turn off indexing on a collection that has

a DefaultTTL already set.

To learn more about Azure DocumentDB, refer to the service documentation page.

https://azure.microsoft.com/documentation/services/documentdb/

arramac • mimig • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • Ross McAllister • Jennifer Hubbard

DocumentDB indexing policies
11/15/2016 • 18 min to read • Edit on GitHub

Contributors

Customizing the indexing policy of a collection

DocumentCollection collection = new DocumentCollection { Id = "myCollection" };

collection.IndexingPolicy = new IndexingPolicy(new RangeIndex(DataType.String) { Precision = -1 });

collection.IndexingPolicy.IndexingMode = IndexingMode.Consistent;

await client.CreateDocumentCollectionAsync(UriFactory.CreateDatabaseUri("db"), collection);

While many customers are happy to let Azure DocumentDB automatically handle all aspects of indexing,

DocumentDB also supports specifying a custom indexing policyindexing policy for collections during creation. Indexing

policies in DocumentDB are more flexible and powerful than secondary indexes offered in other database

platforms, because they let you design and customize the shape of the index without sacrificing schema

flexibility. To learn how indexing works within DocumentDB, you must understand that by managing indexing

policy, you can make fine-grained tradeoffs between index storage overhead, write and query throughput, and

query consistency.

In this article, we take a close look at DocumentDB indexing policies, how you can customize indexing policy, and

the associated trade-offs.

After reading this article, you'll be able to answer the following questions:

How can I override the properties to include or exclude from indexing?

How can I configure the index for eventual updates?

How can I configure indexing to perform Order By or range queries?

How do I make changes to a collection’s indexing policy?

How do I compare storage and performance of different indexing policies?

Developers can customize the trade-offs between storage, write/query performance, and query consistency, by

overriding the default indexing policy on a DocumentDB collection and configuring the following aspects.

Including/Excluding documents and paths to/from indexIncluding/Excluding documents and paths to/from index. Developers can choose certain documents to

be excluded or included in the index at the time of inserting or replacing them to the collection. Developers

can also choose to include or exclude certain JSON properties a.k.a. paths (including wildcard patterns) to be

indexed across documents which are included in an index.

Configur ing Var ious Index TypesConfigur ing Var ious Index Types . For each of the included paths, developers can also specify the type of

index they require over a collection based on their data and expected query workload and the numeric/string

“precision” for each path.

Configur ing Index Update ModesConfigur ing Index Update Modes . DocumentDB supports three indexing modes which can be configured

via the indexing policy on a DocumentDB collection: Consistent, Lazy and None.

The following .NET code snippet shows how to set a custom indexing policy during the creation of a collection.

Here we set the policy with Range index for strings and numbers at the maximum precision. This policy lets us

execute Order By queries against strings.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-indexing-policies.md
https://github.com/arramac
https://github.com/mimig1
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/rmca14
https://github.com/JennieHubbard
file:///D:/azure-docs-pr/_site/azure/.tmp/documentdb/documentdb-indexing.html

NOTE

Database indexing modes

NOTE

CONSISTENCYCONSISTENCY INDEXING MODE: CONSISTENTINDEXING MODE: CONSISTENT INDEXING MODE: LAZYINDEXING MODE: LAZY

Strong Strong Eventual

Bounded Staleness Bounded Staleness Eventual

Session Session Eventual

Eventual Eventual Eventual

The JSON schema for indexing policy was changed with the release of REST API version 2015-06-03 to support Range

indexes against strings. .NET SDK 1.2.0 and Java, Python, and Node.js SDKs 1.1.0 support the new policy schema. Older

SDKs use the REST API version 2015-04-08 and support the older schema of Indexing Policy.

By default, DocumentDB indexes all string properties within documents consistently with a Hash index, and numeric

properties with a Range index.

DocumentDB supports three indexing modes which can be configured via the indexing policy on a DocumentDB

collection – Consistent, Lazy and None.

ConsistentConsistent: If a DocumentDB collection’s policy is designated as "consistent", the queries on a given

DocumentDB collection follow the same consistency level as specified for the point-reads (i.e. strong, bounded-

staleness, session or eventual). The index is updated synchronously as part of the document update (i.e. insert,

replace, update, and delete of a document in a DocumentDB collection). Consistent indexing supports consistent

queries at the cost of possible reduction in write throughput. This reduction is a function of the unique paths that

need to be indexed and the “consistency level”. Consistent indexing mode is designed for “write quickly, query

immediately” workloads.

LazyLazy : To allow maximum document ingestion throughput, a DocumentDB collection can be configured with lazy

consistency; meaning queries are eventually consistent. The index is updated asynchronously when a

DocumentDB collection is quiescent i.e. when the collection’s throughput capacity is not fully utilized to serve

user requests. For "ingest now, query later" workloads requiring unhindered document ingestion, "lazy" indexing

mode may be suitable.

NoneNone: A collection marked with index mode of “None” has no index associated with it. This is commonly used if

DocumentDB is utilized as a key-value storage and documents are accessed only by their ID property.

Configuring the indexing policy with “None” has the side effect of dropping any existing index. Use this if your access

patterns are only require “id” and/or “self-link”.

The following sample show how create a DocumentDB collection using the .NET SDK with consistent automatic

indexing on all document insertions.

The following table shows the consistency for queries based on the indexing mode (Consistent and Lazy)

configured for the collection and the consistency level specified for the query request. This applies to queries

made using any interface - REST API, SDKs or from within stored procedures and triggers.

DocumentDB returns an error for queries made on collections with None indexing mode. Queries can still be

executed as scans via the explicit x-ms-documentdb-enable-scan header in the REST API or the EnableScanInQuery

CONSISTENCYCONSISTENCY
INDEXING MODE:INDEXING MODE:
CONSISTENTCONSISTENT INDEXING MODE: LAZYINDEXING MODE: LAZY INDEXING MODE: NONEINDEXING MODE: NONE

Strong Strong Eventual Strong

Bounded Staleness Bounded Staleness Eventual Bounded Staleness

Session Session Eventual Session

Eventual Eventual Eventual Eventual

 // Default collection creates a hash index for all string and numeric

 // fields. Hash indexes are compact and offer efficient

 // performance for equality queries.

 var collection = new DocumentCollection { Id ="defaultCollection" };

 collection.IndexingPolicy.IndexingMode = IndexingMode.Consistent;

 collection = await client.CreateDocumentCollectionAsync(UriFactory.CreateDatabaseUri("mydb"), collection);

Index paths

PATHPATH DESCRIPTION/USE CASEDESCRIPTION/USE CASE

/ Default path for collection. Recursive and applies to whole
document tree.

request option using the .NET SDK. Some query features like ORDER BY are not supported as scans with

EnableScanInQuery .

The following table shows the consistency for queries based on the indexing mode (Consistent, Lazy, and None)

when EnableScanInQuery is specified.

The following code sample show how create a DocumentDB collection using the .NET SDK with consistent

indexing on all document insertions.

DocumentDB models JSON documents and the index as trees, and allows you to tune to policies for paths within

the tree. You can find more details in this introduction to DocumentDB indexing. Within documents, you can

choose which paths must be included or excluded from indexing. This can offer improved write performance and

lower index storage for scenarios when the query patterns are known beforehand.

Index paths start with the root (/) and typically end with the ? wildcard operator, denoting that there are multiple

possible values for the prefix. For example, to serve SELECT * FROM Families F WHERE F.familyName =

"Andersen", you must include an index path for /familyName/? in the collection’s index policy.

Index paths can also use the * wildcard operator to specify the behavior for paths recursively under the prefix.

For example, /payload/* can be used to exclude everything under the payload property from indexing.

Here are the common patterns for specifying index paths:

file:///D:/azure-docs-pr/_site/azure/.tmp/documentdb/documentdb-indexing.html

/prop/? Index path required to serve queries like the following (with
Hash or Range types respectively):

SELECT FROM collection c WHERE c.prop = "value"

SELECT FROM collection c WHERE c.prop > 5

SELECT FROM collection c ORDER BY c.prop

/prop/ Index path for all paths under the specified label. Works with
the following queries

SELECT FROM collection c WHERE c.prop = "value"

SELECT FROM collection c WHERE c.prop.subprop > 5

SELECT FROM collection c WHERE c.prop.subprop.nextprop =
"value"

SELECT FROM collection c ORDER BY c.prop

/props/[]/? Index path required to serve iteration and JOIN queries
against arrays of scalars like ["a", "b", "c"]:

SELECT tag FROM tag IN collection.props WHERE tag =
"value"

SELECT tag FROM collection c JOIN tag IN c.props WHERE
tag > 5

/props/[]/subprop/? Index path required to serve iteration and JOIN queries
against arrays of objects like [{subprop: "a"}, {subprop: "b"}]:

SELECT tag FROM tag IN collection.props WHERE
tag.subprop = "value"

SELECT tag FROM collection c JOIN tag IN c.props WHERE
tag.subprop = "value"

/prop/subprop/? Index path required to serve queries (with Hash or Range
types respectively):

SELECT FROM collection c WHERE c.prop.subprop = "value"

SELECT FROM collection c WHERE c.prop.subprop > 5

PATHPATH DESCRIPTION/USE CASEDESCRIPTION/USE CASE

NOTE

While setting custom index paths, you are required to specify the default indexing rule for the entire document tree

denoted by the special path "/*".

The following example configures a specific path with range indexing and a custom precision value of 20 bytes:

var collection = new DocumentCollection { Id = "rangeSinglePathCollection" };

collection.IndexingPolicy.IncludedPaths.Add(

 new IncludedPath {

 Path = "/Title/?",

 Indexes = new Collection<Index> {

 new RangeIndex(DataType.String) { Precision = 20 } }

 });

// Default for everything else

collection.IndexingPolicy.IncludedPaths.Add(

 new IncludedPath {

 Path = "/*" ,

 Indexes = new Collection<Index> {

 new HashIndex(DataType.String) { Precision = 3 },

 new RangeIndex(DataType.Number) { Precision = -1 }

 }

 });

collection = await client.CreateDocumentCollectionAsync(UriFactory.CreateDatabaseUri("db"), pathRange);

Index data types, kinds and precisions

Index kind

NOTE

INDEX KINDINDEX KIND DESCRIPTION/USE CASEDESCRIPTION/USE CASE

Now that we've taken a look at how to specify paths, let's look at the options we can use to configure the

indexing policy for a path. You can specify one or more indexing definitions for every path:

Data type: S tr ingStr ing, NumberNumber , PointPoint, PolygonPolygon , or L ineStr ingL ineStr ing (can contain only one entry per data type per

path)

Index kind: HashHash (equality queries), RangeRange (equality, range or Order By queries), or SpatialSpatial (spatial queries)

Precision: 1-8 or -1 (Maximum precision) for numbers, 1-100 (Maximum precision) for string

DocumentDB supports Hash and Range index kinds for every path (that can configured for strings, numbers or

both).

HashHash supports efficient equality and JOIN queries. For most use cases, hash indexes do not need a higher

precision than the default value of 3 bytes. DataType can be String or Number.

RangeRange supports efficient equality queries, range queries (using >, <, >=, <=, !=), and Order By queries. Order

By queries by default also require maximum index precision (-1). DataType can be String or Number.

DocumentDB also supports the Spatial index kind for every path, that can be specified for the Point, Polygon, or

LineString data types. The value at the specified path must be a valid GeoJSON fragment like

{"type": "Point", "coordinates": [0.0, 10.0]} .

SpatialSpatial supports efficient spatial (within and distance) queries. DataType can be Point, Polygon, or LineString.

DocumentDB supports automatic indexing of Points, Polygons, and LineStrings.

Here are the supported index kinds and examples of queries that they can be used to serve:

Hash Hash over /prop/? (or /) can be used to serve the following
queries efficiently:

SELECT FROM collection c WHERE c.prop = "value"

Hash over /props/[]/? (or / or /props/) can be used to serve
the following queries efficiently:

SELECT tag FROM collection c JOIN tag IN c.props WHERE
tag = 5

Range Range over /prop/? (or /) can be used to serve the following
queries efficiently:

SELECT FROM collection c WHERE c.prop = "value"

SELECT FROM collection c WHERE c.prop > 5

SELECT FROM collection c ORDER BY c.prop

Spatial Range over /prop/? (or /) can be used to serve the following
queries efficiently:

SELECT FROM collection c

WHERE ST_DISTANCE(c.prop, {"type": "Point", "coordinates":
[0.0, 10.0]}) < 40

SELECT FROM collection c WHERE ST_WITHIN(c.prop, {"type":
"Polygon", ... }) --with indexing on points enabled

SELECT FROM collection c WHERE ST_WITHIN({"type":
"Point", ... }, c.prop) --with indexing on polygons enabled

INDEX KINDINDEX KIND DESCRIPTION/USE CASEDESCRIPTION/USE CASE

Index precision

By default, an error is returned for queries with range operators such as >= if there is no range index (of any

precision) in order to signal that a scan might be necessary to serve the query. Range queries can be performed

without a range index using the x-ms-documentdb-enable-scan header in the REST API or the

EnableScanInQuery request option using the .NET SDK. If there are any other filters in the query that

DocumentDB can use the index to filter against, then no error will be returned.

The same rules apply for spatial queries. By default, an error is returned for spatial queries if there is no spatial

index, and there are no other filters that can be served from the index. They can be performed as a scan using x-

ms-documentdb-enable-scan/EnableScanInQuery.

Index precision lets you tradeoff between index storage overhead and query performance. For numbers, we

recommend using the default precision configuration of -1 ("maximum"). Since numbers are 8 bytes in JSON,

this is equivalent to a configuration of 8 bytes. Picking a lower value for precision, such as 1-7, means that values

within some ranges map to the same index entry. Therefore you will reduce index storage space, but query

execution might have to process more documents and consequently consume more throughput i.e., request

units.

Index precision configuration has more practical application with string ranges. Since strings can be any arbitrary

length, the choice of the index precision can impact the performance of string range queries, and impact the

amount of index storage space required. String range indexes can be configured with 1-100 or -1 ("maximum").

If you would like to perform Order By queries against string properties, then you must specify a precision of -1

for the corresponding paths.

var rangeDefault = new DocumentCollection { Id = "rangeCollection" };

// Override the default policy for Strings to range indexing and "max" (-1) precision

rangeDefault.IndexingPolicy = new IndexingPolicy(new RangeIndex(DataType.String) { Precision = -1 });

await client.CreateDocumentCollectionAsync(UriFactory.CreateDatabaseUri("db"), rangeDefault);

NOTE

var collection = new DocumentCollection { Id = "excludedPathCollection" };

collection.IndexingPolicy.IncludedPaths.Add(new IncludedPath { Path = "/*" });

collection.IndexingPolicy.ExcludedPaths.Add(new ExcludedPath { Path = "/nonIndexedContent/*");

collection = await client.CreateDocumentCollectionAsync(UriFactory.CreateDatabaseUri("db"), excluded);

Opting in and opting out of indexing

// If you want to override the default collection behavior to either

// exclude (or include) a Document from indexing,

// use the RequestOptions.IndexingDirective property.

client.CreateDocumentAsync(UriFactory.CreateDocumentCollectionUri("db", "coll"),

 new { id = "AndersenFamily", isRegistered = true },

 new RequestOptions { IndexingDirective = IndexingDirective.Include });

Modifying the indexing policy of a collection

Spatial indexes always use the default index precision for all types (Points, LineStrings, and Polygons) and cannot

be overriden.

The following example shows how to increase the precision for range indexes in a collection using the .NET SDK.

Create a collection w ith a custom index precis ionCreate a collection w ith a custom index precis ion

DocumentDB returns an error when a query uses Order By but does not have a range index against the queried path with

the maximum precision.

Similarly, paths can be completely excluded from indexing. The next example shows how to exclude an entire

section of the documents (a.k.a. a sub-tree) from indexing using the "*" wildcard.

You can choose whether you want the collection to automatically index all documents. By default, all documents

are automatically indexed, but you can choose to turn it off. When indexing is turned off, documents can be

accessed only through their self-links or by queries using ID.

With automatic indexing turned off, you can still selectively add only specific documents to the index. Conversely,

you can leave automatic indexing on and selectively choose to exclude only specific documents. Indexing on/off

configurations are useful when you have only a subset of documents that need to be queried.

For example, the following sample shows how to include a document explicitly using the DocumentDB .NET SDK

and the RequestOptions.IndexingDirective property.

DocumentDB allows you to make changes to the indexing policy of a collection on the fly. A change in indexing

policy on a DocumentDB collection can lead to a change in the shape of the index including the paths can be

indexed, their precision, as well as the consistency model of the index itself. Thus a change in indexing policy,

effectively requires a transformation of the old index into a new one.

Online Index TransformationsOnline Index Transformations

https://github.com/Azure/azure-documentdb-java
http://msdn.microsoft.com/library/microsoft.azure.documents.client.requestoptions.indexingdirective.aspx

Index transformations are made online, meaning that the documents indexed per the old policy are efficiently

transformed per the new policy w ithout affecting the wr ite availabil ity or the prov is ioned throughputw ithout affecting the wr ite availabil ity or the prov is ioned throughput

of the collection. The consistency of read and write operations made using the REST API, SDKs or from within

stored procedures and triggers is not impacted during index transformation. This means that there is no

performance degradation or downtime to your apps when you make an indexing policy change.

However, during the time that index transformation is progress, queries are eventually consistent regardless of

the indexing mode configuration (Consistent or Lazy). This also applies to queries from all interfaces – REST API,

SDKs, and from within stored procedures and triggers. Just like with Lazy indexing, index transformation is

performed asynchronously in the background on the replicas using the spare resources available for a given

replica.

Index transformations are also made in-s ituin-s itu (in place), i.e. DocumentDB does not maintain two copies of the

index and swap the old index out with the new one. This means that no additional disk space is required or

consumed in your collections while performing index transformations.

When you change indexing policy, how the changes are applied to move from the old index to the new one

depend primarily on the indexing mode configurations more so than the other values like included/excluded

paths, index kinds and precisions. If both your old and new policies use consistent indexing, then DocumentDB

performs an online index transformation. You cannot apply another indexing policy change with consistent

indexing mode while the transformation is in progress.

You can however move to Lazy or None indexing mode while a transformation is in progress.

When you move to Lazy, the index policy change is made effective immediately and DocumentDB starts

recreating the index asynchronously.

When you move to None, then the index is dropped effective immediately. Moving to None is useful when

you want to cancel an in progress transformation and start fresh with a different indexing policy.

If you’re using the .NET SDK, you can kick of an indexing policy change using the new

ReplaceDocumentCollectionAsyncReplaceDocumentCollectionAsync method and track the percentage progress of the index transformation

using the IndexTransformationProgressIndexTransformationProgress response property from a ReadDocumentCollectionAsyncReadDocumentCollectionAsync call.

Other SDKs and the REST API support equivalent properties and methods for making indexing policy changes.

Here's a code snippet that shows how to modify a collection's indexing policy from Consistent indexing mode to

Lazy.

Modify Indexing Policy from Consistent to LazyModify Indexing Policy from Consistent to Lazy

// Switch to lazy indexing.

Console.WriteLine("Changing from Default to Lazy IndexingMode.");

collection.IndexingPolicy.IndexingMode = IndexingMode.Lazy;

await client.ReplaceDocumentCollectionAsync(collection);

long smallWaitTimeMilliseconds = 1000;

long progress = 0;

while (progress < 100)

{

 ResourceResponse<DocumentCollection> collectionReadResponse = await client.ReadDocumentCollectionAsync(

 UriFactory.CreateDocumentCollectionUri("db", "coll"));

 progress = collectionReadResponse.IndexTransformationProgress;

 await Task.Delay(TimeSpan.FromMilliseconds(smallWaitTimeMilliseconds));

}

// Switch to lazy indexing.

Console.WriteLine("Dropping index by changing to to the None IndexingMode.");

collection.IndexingPolicy.IndexingMode = IndexingMode.None;

await client.ReplaceDocumentCollectionAsync(collection);

NOTE

Performance tuning

You can check the progress of an index transformation by calling ReadDocumentCollectionAsync, for example, as

shown below.

Track Progress of Index TransformationTrack Progress of Index Transformation

You can drop the index for a collection by moving to the None indexing mode. This might be a useful operational

tool if you want to cancel an in-progress transformation and start a new one immediately.

Dropping the index for a collectionDropping the index for a collection

When would you make indexing policy changes to your DocumentDB collections? The following are the most

common use cases:

Serve consistent results during normal operation, but fall back to lazy indexing during bulk data imports

Start using new indexing features on your current DocumentDB collections, e.g., like geospatial querying

which require the Spatial index kind, or Order By/string range queries which require the string Range index

kind

Hand select the properties to be indexed and change them over time

Tune indexing precision to improve query performance or reduce storage consumed

To modify indexing policy using ReplaceDocumentCollectionAsync, you need version >= 1.3.0 of the .NET SDK

For index transformation to complete successfully, you must ensure that there is sufficient free storage space available on

the collection. If the collection reaches its storage quota, then the index transformation will be paused. Index

transformation will automatically resume once storage space is available, e.g. if you delete some documents.

The DocumentDB APIs provide information about performance metrics such as the index storage used, and the

 // Measure the document size usage (which includes the index size) against

 // different policies.

 ResourceResponse<DocumentCollection> collectionInfo = await

client.ReadDocumentCollectionAsync(UriFactory.CreateDocumentCollectionUri("db", "coll"));

 Console.WriteLine("Document size quota: {0}, usage: {1}", collectionInfo.DocumentQuota,

collectionInfo.DocumentUsage);

 // Measure the performance (request units) of writes.

 ResourceResponse<Document> response = await

client.CreateDocumentAsync(UriFactory.CreateDocumentCollectionUri("db", "coll"), myDocument);

 Console.WriteLine("Insert of document consumed {0} request units", response.RequestCharge);

 // Measure the performance (request units) of queries.

 IDocumentQuery<dynamic> queryable = client.CreateDocumentQuery(UriFactory.CreateDocumentCollectionUri("db",

"coll"), queryString).AsDocumentQuery();

 double totalRequestCharge = 0;

 while (queryable.HasMoreResults)

 {

 FeedResponse<dynamic> queryResponse = await queryable.ExecuteNextAsync<dynamic>();

 Console.WriteLine("Query batch consumed {0} request units",queryResponse.RequestCharge);

 totalRequestCharge += queryResponse.RequestCharge;

 }

 Console.WriteLine("Query consumed {0} request units in total", totalRequestCharge);

Changes to the indexing policy specification

throughput cost (request units) for every operation. This information can be used to compare various indexing

policies and for performance tuning.

To check the storage quota and usage of a collection, run a HEAD or GET request against the collection resource,

and inspect the x-ms-request-quota and the x-ms-request-usage headers. In the .NET SDK, the

DocumentSizeQuota and DocumentSizeUsage properties in ResourceResponse contain these corresponding

values.

To measure the overhead of indexing on each write operation (create, update, or delete), inspect the x-ms-

request-charge header (or the equivalent RequestCharge property in ResourceResponse in the .NET SDK) to

measure the number of request units consumed by these operations.

A change in the schema for indexing policy was introduced on July 7, 2015 with REST API version 2015-06-03.

The corresponding classes in the SDK versions have new implementations to match the schema.

The following changes were implemented in the JSON specification:

Indexing Policy supports Range indexes for strings

Each path can have multiple index definitions, one for each data type

Indexing precision supports 1-8 for numbers, 1-100 for strings, and -1 (maximum precision)

Paths segments do not require a double quotation to escape each path. For example, you can add a path for

/title/? instead of /"title"/?

The root path representing "all paths" can be represented as /* (in addition to /)

If you have code that provisions collections with a custom indexing policy written with version 1.1.0 of the .NET

SDK or older, you will need to change your application code to handle these changes in order to move to SDK

version 1.2.0. If you do not have code that configures indexing policy, or plan to continue using an older SDK

version, no changes are required.

For a practical comparison, here is one example custom indexing policy written using the REST API version 2015-

06-03 as well as the previous version 2015-04-08.

http://msdn.microsoft.com/library/dn850325.aspx
http://msdn.microsoft.com/library/azure/dn850324.aspx
http://msdn.microsoft.com/library/dn799209.aspx
http://msdn.microsoft.com/library/dn799099.aspx
http://msdn.microsoft.com/library/dn799209.aspx

{

 "automatic":true,

 "indexingMode":"Consistent",

 "IncludedPaths":[

 {

 "IndexType":"Hash",

 "Path":"/",

 "NumericPrecision":7,

 "StringPrecision":3

 }

],

 "ExcludedPaths":[

 "/\"nonIndexedContent\"/*"

]

}

{

 "automatic":true,

 "indexingMode":"Consistent",

 "includedPaths":[

 {

 "path":"/*",

 "indexes":[

 {

 "kind":"Hash",

 "dataType":"String",

 "precision":3

 },

 {

 "kind":"Hash",

 "dataType":"Number",

 "precision":7

 }

]

 }

],

 "ExcludedPaths":[

 {

 "path":"/nonIndexedContent/*"

 }

]

}

Next Steps

Prev ious Indexing Policy JSONPrev ious Indexing Policy JSON

Current Indexing Policy JSONCurrent Indexing Policy JSON

Follow the links below for index policy management samples and to learn more about DocumentDB's query

language.

1. DocumentDB .NET Index Management code samples

2. DocumentDB REST API Collection Operations

3. Query with DocumentDB SQL

https://github.com/Azure/azure-documentdb-net/blob/master/samples/code-samples/IndexManagement/Program.cs
https://msdn.microsoft.com/library/azure/dn782195.aspx

Kirat Pandya • mimig • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • James Dunn • Han Wong • arramac • Ryan CrawCour

• v-aljenk • Stephen Baron

Securing access to DocumentDB data
11/22/2016 • 6 min to read • Edit on GitHub

Contributors

DocumentDB access control concepts

This article provides an overview of securing access to data stored in Microsoft Azure DocumentDB.

After reading this overview, you'll be able to answer the following questions:

What are DocumentDB master keys?

What are DocumentDB read-only keys?

What are DocumentDB resource tokens?

How can I use DocumentDB users and permissions to secure access to DocumentDB data?

DocumentDB provides first class concepts in order to control access to DocumentDB resources. For the purposes of

this topic, DocumentDB resources are grouped into two categories:

Administrative resources

Application resources

Account

Database

User

Permission

Collection

Offer

Document

Attachment

Stored procedure

Trigger

User-defined function

In the context of these two categories, DocumentDB supports three types of access control personas: account

administrator, read-only administrator, and database user. The rights for each access control persona are:

Account administrator: Full access to all of the resources (administrative and application) within a given

DocumentDB account.

Read-only administrator: Read-only access to all of the resources (administrative and application within a given

DocumentDB account.

Database user: The DocumentDB user resource associated with a specific set of DocumentDB database

resources (e.g. collections, documents, scripts). There can be one or more user resources associated with a given

database, and each user resource may have one or more permissions associated with it.

With the aforementioned categories and resources in mind, the DocumentDB access control model defines three

types of access constructs:

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-secure-access-to-data.md
https://github.com/kiratp
https://github.com/mimig1
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/Ja-Dunn
https://github.com/h0n
https://github.com/arramac
https://github.com/ryancrawcour
https://github.com/v-aljenk
https://github.com/stephbaron
https://azure.microsoft.com/services/documentdb/

Working with DocumentDB master and read-only keys

Master keys: Upon creation of a DocumentDB account, two master keys (primary and secondary) are created.

These keys enable full administrative access to all resources within the DocumentDB account.

Read-only keys: Upon creation of a DocumentDB account, two read-only keys (primary and secondary) are

created. These keys enable read-only access to all resources within the DocumentDB account.

Resource tokens: A resource token is associated with a DocumentDB permission resource and captures the

relationship between the user of a database and the permission that user has for a specific DocumentDB

application resource (e.g. collection, document).

As mentioned earlier, DocumentDB master keys provide full administrative access to all resources within a

DocumentDB account, while read-only keys enable read access to all resources within the account. The following

code snippet illustrates how to use a DocumentDB account endpoint and master key to instantiate a

DocumentClient and create a new database.

//Read the DocumentDB endpointUrl and authorization keys from config.

//These values are available from the Azure Classic Portal on the DocumentDB Account Blade under "Keys".

//NB > Keep these values in a safe and secure location. Together they provide Administrative access to your DocDB

account.

private static readonly string endpointUrl = ConfigurationManager.AppSettings["EndPointUrl"];

private static readonly SecureString authorizationKey =

ToSecureString(ConfigurationManager.AppSettings["AuthorizationKey"]);

client = new DocumentClient(new Uri(endpointUrl), authorizationKey);

// Create Database

Database database = await client.CreateDatabaseAsync(

 new Database

 {

 Id = databaseName

 });

Overview of DocumentDB resource tokens

You can use a resource token (by creating DocumentDB users and permissions) when you want to provide access

to resources in your DocumentDB account to a client that cannot be trusted with the master key. Your DocumentDB

master keys include both a primary and secondary key, each of which grants administrative access to your account

and all of the resources in it. Exposing either of your master keys opens your account to the possibility of malicious

or negligent use.

Likewise, DocumentDB read-only keys provide read access to all resources - except permission resources, of course

- within a DocumentDB account and cannot be used to provide more granular access to specific DocumentDB

resources.

DocumentDB resource tokens provide a safe alternative that allows clients to read, write, and delete resources in

your DocumentDB account according to the permissions you've granted, and without need for either a master or

read only key.

Here is a typical design pattern whereby resource tokens may be requested, generated and delivered to clients:

1. A mid-tier service is set up to serve a mobile application to share user photos.

2. The mid-tier service possesses the master key of the DocumentDB account.

3. The photo app is installed on end user mobile devices.

4. On login, the photo app establishes the identity of the user with the mid-tier service. This mechanism of identity

establishment is purely up to the application.

5. Once the identity is established, the mid-tier service requests permissions based on the identity.

6. The mid-tier service sends a resource token back to the phone app.

7. The phone app can continue to use the resource token to directly access DocumentDB resources with the

permissions defined by the resource token and for the interval allowed by the resource token.

8. When the resource token expires, subsequent requests will receive a 401 unauthorized exception. At this point,

the phone app re-establishes the identity and requests a new resource token.

Working with DocumentDB users and permissions

//Create a user.

User docUser = new User

{

 Id = "mobileuser"

};

docUser = await client.CreateUserAsync(UriFactory.CreateDatabaseUri("db"), docUser);

NOTE

NOTE

// Create a permission.

Permission docPermission = new Permission

{

 PermissionMode = PermissionMode.Read,

 ResourceLink = documentCollection.SelfLink,

 Id = "readperm"

};

docPermission = await client.CreatePermissionAsync(UriFactory.CreateUserUri("db", "user"), docPermission);

Console.WriteLine(docPermission.Id + " has token of: " + docPermission.Token);

A DocumentDB user resource is associated with a DocumentDB database. Each database may contain zero or more

DocumentDB users. The following code snippet shows how to create a DocumentDB user resource.

Each DocumentDB user has a PermissionsLink property which can be used to retrieve the list of permissions associated with

the user.

A DocumentDB permission resource is associated with a DocumentDB user. Each user may contain zero or more

DocumentDB permissions. A permission resource provides access to a security token that the user needs when

trying to access a specific application resource. There are two available access levels which may be provided by a

permission resource:

All: The user has full permission on the resource

Read: The user can only read the contents of the resource but cannot perform write, update, or delete operations

on the resource.

In order to run DocumentDB stored procedures the user must have the All permission on the collection in which the stored

procedure will be run.

The following code snippet shows how to create a permission resource, read the resource token of the permission

resource and associate the permissions with the user created above.

If you have specified a partition key for your collection, then the permission for collection, document and

attachment resources must also include the ResourcePartitionKey in addition to the ResourceLink.

In order to easily obtain all permission resources associated with a particular user, DocumentDB makes available a

permission feed for each user object. The following code snippet shows how to retrieve the permission associated

with the user created above, construct a permission list, and instantiate a new DocumentClient on behalf of the

user.

//Read a permission feed.

FeedResponse<Permission> permFeed = await client.ReadPermissionFeedAsync(

 UriFactory.CreateUserUri("db", "myUser"));

List<Permission> permList = new List<Permission>();

foreach (Permission perm in permFeed)

{

 permList.Add(perm);

}

DocumentClient userClient = new DocumentClient(new Uri(endpointUrl), permList);

TIP

Next steps

Resource tokens have a default valid timespan of 1 hour. Token lifetime, however, may be explicitly specified, up to a

maximum of 5 hours.

To learn more about DocumentDB, click here.

To learn about managing master and read-only keys, click here.

To learn how to construct DocumentDB authorization tokens, click here

http://azure.com/docdb
https://msdn.microsoft.com/library/azure/dn783368.aspx

Rahul Prasad • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • mimig

Automatic online backup and restore with
DocumentDB
11/15/2016 • 3 min to read • Edit on GitHub

Contributors

High availability with DocumentDB - a recap

Azure DocumentDB automatically takes backups of all your data at regular intervals. The automatic backups are

taken without affecting the performance or availability of your NoSQL database operations. All your backups are

stored separately in another storage service, and those backups are globally replicated for resiliency against

regional disasters. The automatic backups are intended for scenarios when you accidentally delete your

DocumentDB collection and later require data recovery or a disaster recovery solution.

This article starts with a quick recap of the data redundancy and availability in DocumentDB, and then discusses

backups.

DocumentDB is designed to be globally distributed – it allows you to scale throughput across multiple Azure

regions along with policy driven failover and transparent multi-homing APIs. As a database system offering 99.99%

availability SLAs, all the writes in DocumentDB are durably committed to local disks by a quorum of replicas within

a local data center before acknowledging to the client. Note that the high availability of DocumentDB relies on local

storage and does not depend on any external storage technologies. Additionally, if your database account is

associated with more than one Azure region, your writes are replicated across other regions as well. To scale your

throughput and access data at low latencies, you can have as many read regions associated with your database

account as you like. In each read region, the (replicated) data is durably persisted across a replica set.

As illustrated in the following diagram, a single DocumentDB collection is horizontally partitioned. A “partition” is

denoted by a circle in the following diagram, and each partition is made highly available via a replica set. This is the

local distribution within a single Azure region (denoted by the X axis). Further, each partition (with its

corresponding replica set) is then globally distributed across multiple regions associated with your database

account (for example, in this illustration the three regions – East US, West US and Central India). The “partition set”

is a globally distributed entity comprising of multiple copies of your data in each region (denoted by the Y axis).

You can assign priority to the regions associated with your database account and DocumentDB will transparently

failover to the next region in case of disaster. You can also manually simulate failover to test the end-to-end

availability of your application.

The following image illustrates the high degree of redundancy with DocumentDB.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-online-backup-and-restore.md
https://github.com/RahulPrasad16
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/mimig1
https://azure.microsoft.com/support/legal/sla/documentdb/v1_0/

Full, automatic, online backups

Oops, I deleted my collection or database! With DocumentDB, not only your data, but the backups of your data are

also made highly redundant and resilient to regional disasters. These automated backups are currently taken

approximately every four hours.

Retention period for a given snapshot

Restore database from the online backup

Next steps

The backups are taken without affecting the performance or availability of your database operations. DocumentDB

takes the backup in the background without consuming your provisioned RUs or affecting the performance and

without affecting the availability of your NoSQL database.

Unlike your data that is stored inside DocumentDB, the automatic backups are stored in Azure Blob Storage service.

To guarantee the low latency/efficient upload, the snapshot of your backup is uploaded to an instance of Azure Blob

storage in the same region as the current write region of your DocumentDB database account. For resiliency

against regional disaster, each snapshot of your backup data in Azure Blob Storage is again replicated via geo-

redundant storage (GRS) to another region. The following diagram shows that the entire DocumentDB collection

(with all three primary partitions in West US, in this example) is backed up in a remote Azure Blob Storage account

in West US and then GRS replicated to East US.

The following image illustrates periodic full backups of all DocumentDB entities in GRS Azure Storage.

As described above, we periodically take snapshots of your data and per our compliance regulations, we retain the

latest snapshot up to 90 days before it eventually gets purged. If a collection or account is deleted, DocumentDB

stores the last backup for 90 days.

In case you accidentally delete your data, you can file a support ticket or call Azure support to restore the data from

the last automatic backup. For a specific snapshot of your backup to be restored, DocumentDB requires that the

data was at least available with us for the duration of the backup cycle for that snapshot.

To replicate your NoSQL database in multiple data centers, see distribute your data globally with DocumentDB.

To file contact Azure Support, file a ticket from the Azure portal.

https://portal.azure.com/?#blade/Microsoft_Azure_Support/HelpAndSupportBlade
https://azure.microsoft.com/support/options/
https://portal.azure.com/?#blade/Microsoft_Azure_Support/HelpAndSupportBlade

mimig • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • PRmerger • Jason Card • arramac • Carolyn Gronlund

• John Macintyre • v-aljenk • Dene Hager

Performance levels and pricing tiers in DocumentDB
11/15/2016 • 8 min to read • Edit on GitHub

Contributors

Introduction to performance levels

PERFORMANCEPERFORMANCE
TYPETYPE DETAILSDETAILS THROUGHPUTTHROUGHPUT STORAGESTORAGE VERSIONVERSION APISAPIS

User-defined
performance

User sets
throughput in
units of 100
RU/s

Unlimited.

400 - 250,000
request units/s
by default
(higher by
request)

Unlimited.

250 GB by
default (higher
by request)

V2 API 2015-12-16
and newer

Pre-defined
performance

10 GB reserved
storage.

S1 = 250 RU/s
S2 = 1000 RU/s
S3 = 2500 RU/s

2500 RU/s 10 GB V1 Any

This article provides an overview of performance levels in Microsoft Azure DocumentDB.

After reading this article, you'll be able to answer the following questions:

What is a performance level?

How is throughput reserved for a database account?

How do I work with performance levels?

How am I billed for performance levels?

Each DocumentDB collection created in a Standard DocumentDB account is provisioned with an associated

performance level. Each collection in a database can have a different performance level enabling you to

designate more throughput for frequently accessed collections and less throughput for infrequently accessed

collections.

DocumentDB supports both user-defineduser-defined performance levels and pre-definedpre-defined performance levels, as shown

in the following table. User-defined performance enables you to reserved throughput in units of 100 RU/s and

have unlimited storage, whereas the three pre-defined performance levels have specified throughput options,

and a 10GB storage quota. The following table compares user-defineduser-defined performance to pre-definedpre-defined

performance.

Throughput is reserved per collection, and is available for use by that collection exclusively. Throughput is

measured in request units (RUs), which identify the amount of resources required to perform various

DocumentDB database operations.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-performance-levels.md
https://github.com/mimig1
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/PRmerger
https://github.com/v-jacard
https://github.com/arramac
https://github.com/cjgronlund
https://github.com/johnfmacintyre
https://github.com/v-aljenk
https://github.com/deneha
https://azure.microsoft.com/services/documentdb/

NOTE

Setting performance levels for collections

IMPORTANT

NOTE

Working with performance levels

The performance level of a collection can be adjusted through the SDKs or the Azure portal. Performance level changes

are expected to complete within 3 minutes.

Once a collection is created, the full allocation of RUs based on the designated performance level are reserved

for the collection.

Note that with both user-defined and pre-defined performance levels, DocumentDB operates based on

reservation of throughput. By creating a collection, an application has reserved and is billed for reserved

throughput regardless of how much of that throughput is actively used. With user-defined performance levels,

storage is metered based on consumption, but with pre-defined performance levels, 10 GB of storage is

reserved at the time of collection creation.

After collections are created, you can modify the performance level and/or throughput by using the SDKs or

the Azure portal.

DocumentDB Standard collections are billed at an hourly rate and each collection you create will be billed for a minimum

one hour of usage.

If you adjust the performance level of a collection within an hour, you will be billed for the highest performance

level set during the hour. For example, if you increase your performance level for a collection at 8:53am you

will be charged for the new level starting at 8:00am. Likewise, if you decrease your performance level at

8:53am, the new rate will be applied at 9:00am.

Request units are reserved for each collection based on the performance level set. Request unit consumption is

evaluated as a per second rate. Applications that exceed the provisioned request unit rate (or performance

level) on a collection will be throttled until the rate drops below the reserved level for that collection. If your

application requires a higher level of throughput, you can increase the performance level for each collection.

When your application exceeds performance levels for one or multiple collections, requests will be throttled on a per

collection basis. This means that some application requests may succeed while others may be throttled. It is

recommended to add a small number of retries when throttled in order to handle spikes in request traffic.

DocumentDB collections enable you to group your data based on both the query patterns and performance

needs of your application. With DocumentDB’s automatic indexing and query support, it is quite common to

collocate heterogeneous documents within the same collection. The key considerations in deciding whether

separate collections should be used include:

Queries – A collection is the scope for query execution. If you need to query across a set of documents, the

most efficient read patterns come from collocating documents in a single collection.

Transactions – All transactions are scoped to within a single collection. If you have documents that must be

updated within a single stored procedure or trigger, they must be stored within the same collection. More

specifically, a partition key within a collection is the transaction boundary. Please see Partitioning in

DocumentDB for more details.

https://portal.azure.com/
https://portal.azure.com/

IMPORTANT

Change from S1, S2, S3 to user-defined performance

Performance isolation – A collection has an associated performance level. This ensures that each collection

has a predictable performance through reserved RUs. Data can be allocated to different collections, with

different performance levels, based on access frequency.

It is important to understand you will be billed at full standard rates based on the number of collections created by your

application.

It is recommended that your application makes use of a small number of collections unless you have large

storage or throughput requirements. Ensure that you have well understood application patterns for the

creation of new collections. You may choose to reserve collection creation as a management action handled

outside your application. Similarly, adjusting the performance level for a collection will change the hourly rate

at which the collection is billed. You should monitor collection performance levels if your application adjusts

these dynamically.

Follow these steps to change from using pre-defined throughput levels to user-defined throughput levels in

the Azure portal. By using user-defined throughput levels, you can tailor your throughput to your needs. And if

you're still using an S1 account, you can increase your default throughput from 250 RU/s to 400 RU/s with just

a few clicks. Note that once you move a collection from S1, S2 or S3 to Standard (user-defined), you cannot

move back to S1, S2, or S3, you can however modify the throughput of a Standard collection at any time.

For more information about the pricing changes related to user-defined and pre-defined throughput, see the

blog post DocumentDB: Everything you need to know about using the new pricing options.

1. In the Azure portalAzure portal , click NoSQL (DocumentDB)NoSQL (DocumentDB) , then select the DocumentDB account to modify.

If NoSQL (DocumentDB)NoSQL (DocumentDB) is not on the Jumpbar, click >, scroll to DatabasesDatabases , select NoSQLNoSQL

(DocumentDB)(DocumentDB) , and then select the DocumentDB account.

2. On the resource menu, under CollectionsCollections , click ScaleScale , select the collection to modify from the drop

down list, and then click Pr icing TierPr icing Tier . Accounts using pre-defined throughput have a pricing tier of S1,

S2, or S3. In the Choose your pr icing tierChoose your pr icing tier blade, click S tandardStandard to change to user-defined

throughput, and then click SelectSelect to save your change.

https://azure.microsoft.com/blog/documentdb-use-the-new-pricing-options-on-your-existing-collections/
https://portal.azure.com

NOTE

Changing performance levels using the .NET SDK

3. Back in the ScaleScale blade, the Pr icing TierPr icing Tier is changed to S tandardStandard and the Throughput (RU/s)Throughput (RU/s) box is

displayed with a default value of 400. Set the throughput between 400 and 10,000 Request units/second

(RU/s). The Estimated Monthly Bil lEstimated Monthly Bil l at the bottom of the page updates automatically to provide an

estimate of the monthly cost. Click SaveSave to save your changes.

If you determine that you need more throughput (greater than 10,000 RU/s) or more storage (greater

than 10GB) you can create a partitioned collection. To create a partitioned collection, see Create a

collection.

Changing performance levels of a collection may take up to 2 minutes.

Another option for changing your collections' performance levels is through our SDKs. This section only covers

changing a collection's performance level using our .NET SDK, but the process is similar for our other SDKs. If

you are new to our .NET SDK, please visit our getting started tutorial.

Here is a code snippet for changing the offer throughput to 50,000 request units per second:

https://msdn.microsoft.com/library/azure/dn948556.aspx
https://msdn.microsoft.com/library/azure/dn781482.aspx

//Fetch the resource to be updated

Offer offer = client.CreateOfferQuery()

 .Where(r => r.ResourceLink == collection.SelfLink)

 .AsEnumerable()

 .SingleOrDefault();

// Set the throughput to 5000 request units per second

offer = new OfferV2(offer, 5000);

//Now persist these changes to the database by replacing the original resource

await client.ReplaceOfferAsync(offer);

// Set the throughput to S2

offer = new Offer(offer);

offer.OfferType = "S2";

//Now persist these changes to the database by replacing the original resource

await client.ReplaceOfferAsync(offer);

NOTE

Changing the throughput of a collection

Troubleshooting

Collections provisioned with under 10,000 request units per second can be migrated between offers with user-defined

throughput and pre-defined throughput (S1, S2, S3) at any time. Collections which are provisioned with above 10,000

request units per second cannot be converted to pre-defined throughput levels.

Visit MSDN to view additional examples and learn more about our offer methods:

ReadOfferAsyncReadOfferAsync

ReadOffersFeedAsyncReadOffersFeedAsync

ReplaceOfferAsyncReplaceOfferAsync

CreateOfferQueryCreateOfferQuery

If you are already using user-defined performance, you can change the throughput of your collection by doing

the following. If you need to change from an S1, S2 or S3 performance level (pre-defined performance) to

user-defined performance, see Change from S1, S2, S3 to user-defined performance.

1. In the Azure portalAzure portal , click NoSQL (DocumentDB)NoSQL (DocumentDB) , then select the DocumentDB account to modify.

2. On the resource menu, under CollectionsCollections , click ScaleScale , select the collection to modify from the drop down

list.

3. In the Throughput (RU/s)Throughput (RU/s) box, type the new throughput level.

The Estimated Monthly Bil lEstimated Monthly Bil l at the bottom of the page updates automatically to provide an estimate of

the monthly cost. Click SaveSave to save your changes.

If you're not sure how much to increase your throughput, see Estimating throughput needs and the

Request unit calculator.

If you do not see the option to change between S1, S2, or S3 performance levels on the Choose your pr icingChoose your pr icing

tiertier blade, click View allView all to display the Standard, S1, S2, and S3 performance levels. If you are using the

Standard pricing tier, you cannot change between S1, S2, and S3.

https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readofferasync.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readoffersfeedasync.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.replaceofferasync.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createofferquery.aspx
https://portal.azure.com
https://www.documentdb.com/capacityplanner

Next steps

Once you change a collection from S1, S2, or S3 to Standard, you cannot move back to S1, S2, or S3.

To learn more about pricing and managing data with Azure DocumentDB, explore these resources:

DocumentDB pricing

Managing DocumentDB capacity

Modeling data in DocumentDB

Partitioning data in DocumentDB

Request units

To learn more about DocumentDB, see the Azure DocumentDB documentation.

To get started with scale and performance testing with DocumentDB, see Performance and Scale Testing with

Azure DocumentDB.

https://azure.microsoft.com/pricing/details/documentdb/
http://go.microsoft.com/fwlink/?LinkId=735027
https://azure.microsoft.com/documentation/services/documentdb/

mimig • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • arramac • Andrew Hoh • Han Wong • Andy Pasic

Default quotas for DocumentDB
11/22/2016 • 1 min to read • Edit on GitHub

Contributors

ENTITYENTITY DEFAULT QUOTA (STANDARD OFFER)DEFAULT QUOTA (STANDARD OFFER)

Document storage per collection 250 GB*

Throughput per collection, measured in Request Units per
second per collection

250,000 RU/s*

The following table describes the default quotas for Azure DocumentDB database resources.

Quotas listed with an asterisk (*) can be adjusted by contacting Azure support. Quota increases may take up to 24

hours to complete after receiving the required information.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-limits.md
https://github.com/mimig1
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/arramac
https://github.com/AndrewHoh
https://github.com/h0n
https://github.com/v-anpasi

Andrew Hoh • mimig • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • arramac • v-aljenk • Stephen Baron

Request increased DocumentDB account quotas
11/15/2016 • 1 min to read • Edit on GitHub

Contributors

DocumentDB account quotas

ENTITYENTITY DEFAULT QUOTA (STANDARD OFFER)DEFAULT QUOTA (STANDARD OFFER)

Document storage per collection 250 GB*

Throughput per collection, measured in Request Units per
second per collection

250,000 RU/s*

Request a quota adjustment

Microsoft Azure DocumentDB has a set of default quotas that can be adjusted by contacting Azure support. This

article shows how to request a quota increase.

After reading this article, you'll be able to answer the following questions:

Which DocumentDB database quotas can be adjusted by contacting Azure support?

How can I request a DocumentDB account quota adjustment?

The following table describes the DocumentDB quotas. The quotas that have an asterisk (*) can be adjusted by

contacting Azure support:

The following steps show how to request a quota adjustment.

1. In the Azure portal, click More Serv icesMore Serv ices , and then click Help + supportHelp + support.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-increase-limits.md
https://github.com/AndrewHoh
https://github.com/mimig1
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/arramac
https://github.com/v-aljenk
https://github.com/stephbaron
https://azure.microsoft.com/services/documentdb/
https://portal.azure.com

2. In the Help + supportHelp + support blade, click New support requestNew support request.

3. In the New support requestNew support request blade, click BasicsBasics . Next, set Issue typeIssue type to QuotaQuota , Subscr iptionSubscr iption to your

subscription that hosts your DocumentDB account, Quota typeQuota type to DocumentDBDocumentDB, and Support planSupport plan to

Quota SUPPORT - IncludedQuota SUPPORT - Included. Then, click NextNext.

5. Finally, fill in your contact information in the Contact informationContact information blade and click CreateCreate.

4. In the ProblemProblem blade, choose a severity and include information about your quota increase in DetailsDetails .

Click NextNext.

Once the support ticket has been created, you should receive the support request number via email. You can also

view the support request by clicking Manage support requestsManage support requests in the Help + supportHelp + support blade.

 Next steps

To learn more about DocumentDB, click here.

http://azure.com/docdb

Syam Nair • mimig • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • Stephen Baron • katiecumming • arramac

Request Units in DocumentDB
11/22/2016 • 8 min to read • Edit on GitHub

Contributors

Introduction

Request units and request charges

Now available: DocumentDB request unit calculator. Learn more in Estimating your throughput needs.

This article provides an overview of request units in Microsoft Azure DocumentDB.

After reading this article, you'll be able to answer the following questions:

What are request units and request charges?

How do I specify request unit capacity for a collection?

How do I estimate my application's request unit needs?

What happens if I exceed request unit capacity for a collection?

DocumentDB delivers fast, predictable performance by reserving resources to satisfy your application's

throughput needs. Because application load and access patterns change over time, DocumentDB allows you to

easily increase or decrease the amount of reserved throughput available to your application.

With DocumentDB, reserved throughput is specified in terms of request units processing per second. You can

think of request units as throughput currency, whereby you reserve an amount of guaranteed request units

available to your application on per second basis. Each operation in DocumentDB - writing a document,

performing a query, updating a document - consumes CPU, memory, and IOPS. That is, each operation incurs a

request charge, which is expressed in request units. Understanding the factors which impact request unit

charges, along with your application's throughput requirements, enables you to run your application as cost

effectively as possible.

We recommend getting started by watching the following video, where Aravind Ramachandran explains

request units and predictable performance with DocumentDB.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-request-units.md
https://github.com/syamkmsft
https://github.com/mimig1
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/stephbaron
https://github.com/KatieCumming
https://github.com/arramac
https://www.documentdb.com/capacityplanner
https://azure.microsoft.com/services/documentdb/

Specifying request unit capacity

Request unit considerations

When creating a DocumentDB collection, you specify the number of request units per second (RUs) you want

reserved for the collection. Once the collection is created, the full allocation of RUs specified is reserved for the

collection's use. Each collection is guaranteed to have dedicated and isolated throughput characteristics.

It is important to note that DocumentDB operates on a reservation model; that is, you are billed for the amount

of throughput reserved for the collection, regardless of how much of that throughput is actively used. Keep in

mind, however, that as your application's load, data, and usage patterns change you can easily scale up and

down the amount of reserved RUs through DocumentDB SDKs or using the Azure Portal. For more information

on to scale throughput up and down, see DocumentDB performance levels.

When estimating the number of request units to reserve for your DocumentDB collection, it is important to take

the following variables into consideration:

Document s izeDocument s ize . As document sizes increase the units consumed to read or write the data will also increase.

Document property countDocument property count. Assuming default indexing of all properties, the units consumed to write a

document will increase as the property count increases.

Data consistencyData consistency . When using data consistency levels of Strong or Bounded Staleness, additional units will

be consumed to read documents.

Indexed propertiesIndexed properties . An index policy on each collection determines which properties are indexed by default.

You can reduce your request unit consumption by limiting the number of indexed properties or by enabling

lazy indexing.

Document indexingDocument indexing. By default each document is automatically indexed, you will consume fewer request

units if you choose not to index some of your documents.

Query patternsQuery patterns . The complexity of a query impacts how many Request Units are consumed for an

operation. The number of predicates, nature of the predicates, projections, number of UDFs, and the size of

the source data set all influence the cost of query operations.

Scr ipt usageScr ipt usage. As with queries, stored procedures and triggers consume request units based on the

complexity of the operations being performed. As you develop your application, inspect the request charge

header to better understand how each operation is consuming request unit capacity.

https://portal.azure.com

 Estimating throughput needs

NOTE

Use the request unit calculator

A request unit is a normalized measure of request processing cost. A single request unit represents the

processing capacity required to read (via self link or id) a single 1KB JSON document consisting of 10 unique

property values (excluding system properties). A request to create (insert), replace or delete the same document

will consume more processing from the service and thereby more request units.

The baseline of 1 request unit for a 1KB document corresponds to a simple GET by self link or id of the document.

To help customers fine tune their throughput estimations, there is a web based request unit calculator to help

estimate the request unit requirements for typical operations, including:

Document creates (writes)

Document reads

Document deletes

Document updates

The tool also includes support for estimating data storage needs based on the sample documents you provide.

Using the tool is simple:

2. To estimate data storage requirements, enter the total number of documents you expect to store.

1. Upload one or more representative JSON documents.

3. Enter the number of document create, read, update, and delete operations you require (on a per-second

basis). To estimate the request unit charges of document update operations, upload a copy of the sample

document from step 1 above that includes typical field updates. For example, if document updates

typically modify two properties named lastLogin and userVisits, then simply copy the sample document,

update the values for those two properties, and upload the copied document.

https://www.documentdb.com/capacityplanner

NOTE

Use the DocumentDB request charge response header

4. Click calculate and examine the results.

If you have document types which will differ dramatically in terms of size and the number of indexed properties, then

upload a sample of each type of typical document to the tool and then calculate the results.

NOTE

A request unit estimation example

Every response from the DocumentDB service includes a custom header (x-ms-request-charge) that contains

the request units consumed for the request. This header is also accessible through the DocumentDB SDKs. In the

.NET SDK, RequestCharge is a property of the ResourceResponse object. For queries, the DocumentDB Query

Explorer in the Azure portal provides request charge information for executed queries.

With this in mind, one method for estimating the amount of reserved throughput required by your application

is to record the request unit charge associated with running typical operations against a representative

document used by your application and then estimating the number of operations you anticipate performing

each second. Be sure to measure and include typical queries and DocumentDB script usage as well.

If you have document types which will differ dramatically in terms of size and the number of indexed properties, then

record the applicable operation request unit charge associated with each type of typical document.

For example:

1. Record the request unit charge of creating (inserting) a typical document.

2. Record the request unit charge of reading a typical document.

3. Record the request unit charge of updating a typical document.

4. Record the request unit charge of typical, common document queries.

5. Record the request unit charge of any custom scripts (stored procedures, triggers, user-defined functions)

leveraged by the application

6. Calculate the required request units given the estimated number of operations you anticipate to run each

second.

Consider the following ~1KB document:

{

 "id": "08259",

 "description": "Cereals ready-to-eat, KELLOGG, KELLOGG'S CRISPIX",

 "tags": [

 {

 "name": "cereals ready-to-eat"

 },

 {

 "name": "kellogg"

 },

 {

 "name": "kellogg's crispix"

 }

],

 "version": 1,

 "commonName": "Includes USDA Commodity B855",

 "manufacturerName": "Kellogg, Co.",

 "isFromSurvey": false,

 "foodGroup": "Breakfast Cereals",

 "nutrients": [

 {

 "id": "262",

 "description": "Caffeine",

 "nutritionValue": 0,

 "units": "mg"

 },

 {

 "id": "307",

 "description": "Sodium, Na",

 "nutritionValue": 611,

 "units": "mg"

 },

 {

 "id": "309",

 "description": "Zinc, Zn",

 "nutritionValue": 5.2,

 "units": "mg"

 }

],

 "servings": [

 {

 "amount": 1,

 "description": "cup (1 NLEA serving)",

 "weightInGrams": 29

 }

]

}

NOTE

OPERATIONOPERATION REQUEST UNIT CHARGEREQUEST UNIT CHARGE

Create document ~15 RU

Read document ~1 RU

Documents are minified in DocumentDB, so the system calculated size of the document above is slightly less than 1KB.

The following table shows approximate request unit charges for typical operations on this document (the

approximate request unit charge assumes that the account consistency level is set to “Session” and that all

documents are automatically indexed):

Query document by id ~2.5 RU

OPERATIONOPERATION REQUEST UNIT CHARGEREQUEST UNIT CHARGE

QUERYQUERY REQUEST UNIT CHARGEREQUEST UNIT CHARGE # OF RETURNED DOCUMENTS# OF RETURNED DOCUMENTS

Select food by id ~2.5 RU 1

Select foods by manufacturer ~7 RU 7

Select by food group and order by
weight

~70 RU 100

Select top 10 foods in a food group ~10 RU 10

NOTE

OPERATION/QUERYOPERATION/QUERY ESTIMATED NUMBER PER SECONDESTIMATED NUMBER PER SECOND REQUIRED RUSREQUIRED RUS

Create document 10 150

Read document 100 100

Select foods by manufacturer 25 175

Select by food group 10 700

Select top 10 15 150 Total

Exceeding reserved throughput limits

HTTP Status 429

Status Line: RequestRateTooLarge

x-ms-retry-after-ms :100

Additionally, this table shows approximate request unit charges for typical queries used in the application:

RU charges vary based on the number of documents returned.

With this information, we can estimate the RU requirements for this application given the number of operations

and queries we expect per second:

In this case, we expect an average throughput requirement of 1,275 RU/s. Rounding up to the nearest 100, we

would provision 1,300 RU/s for this application's collection.

Recall that request unit consumption is evaluated as a rate per second. For applications that exceed the

provisioned request unit rate for a collection, requests to that collection will be throttled until the rate drops

below the reserved level. When a throttle occurs, the server will preemptively end the request with

RequestRateTooLargeException (HTTP status code 429) and return the x-ms-retry-after-ms header indicating

the amount of time, in milliseconds, that the user must wait before reattempting the request.

If you are using the .NET Client SDK and LINQ queries, then most of the time you never have to deal with this

exception, as the current version of the .NET Client SDK implicitly catches this response, respects the server-

Next steps

specified retry-after header, and retries the request. Unless your account is being accessed concurrently by

multiple clients, the next retry will succeed.

If you have more than one client cumulatively operating above the request rate, the default retry behavior may

not suffice, and the client will throw a DocumentClientException with status code 429 to the application. In cases

such as this, you may consider handling retry behavior and logic in your application's error handling routines or

increasing the reserved throughput for the collection.

To learn more about reserved throughput with Azure DocumentDB databases, explore these resources:

DocumentDB pricing

Managing DocumentDB capacity

Modeling data in DocumentDB

DocumentDB performance levels

To learn more about DocumentDB, see the Azure DocumentDB documentation.

To get started with scale and performance testing with DocumentDB, see Performance and Scale Testing with

Azure DocumentDB.

https://azure.microsoft.com/pricing/details/documentdb/
https://azure.microsoft.com/documentation/services/documentdb/

mimig • Ralph Squillace • Theano Petersen • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • Digvijay Makwana • tfitzmac

• Cynthia Nottingham [MSFT] • Jennifer Hubbard • Andy Pasic

Automate DocumentDB account creation using Azure
CLI and Azure Resource Manager templates
11/15/2016 • 16 min to read • Edit on GitHub

Contributors

Getting ready

Update your Azure CLI version

azure --version

0.10.4 (node: 4.2.4)

Set your Azure account and subscription

azure login

info: Executing command login

|info: To sign in, use a web browser to open the page https://aka.ms/devicelogin.

Enter the code E1A2B3C4D to authenticate.

This article shows you how to create an Azure DocumentDB account by using Azure Resource Manager templates

or directly with the Azure Command-Line Interface (CLI). To create a DocumentDB account using the Azure portal,

see Create a DocumentDB database account using the Azure portal.

DocumentDB database accounts are currently the only DocumentDB resource that can be created using Resource

Manager templates and the Azure CLI.

Before you can use the Azure CLI with Azure resource groups, you need to have the right Azure CLI version and an

Azure account. If you don't have the Azure CLI, install it.

At the command prompt, type azure --version to see whether you have already installed version 0.10.4 or later.

You may be prompted to participate in Microsoft Azure CLI data collection at this step, and can select y or n to opt-

in or opt-out.

If your version is not 0.10.4 or later, you need to either install the Azure CLI or update by using one of the native

installers, or through npmnpm by typing npm update -g azure-cli to update or npm install -g azure-cli to install.

If you don't already have an Azure subscription but you do have a Visual Studio subscription, you can activate your

Visual Studio subscriber benefits. Or you can sign up for a free trial.

You need to have a work or school account or a Microsoft account identity to use Azure resource management

templates. If you have one of these accounts, type the following command:

Which produces the following output:

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-automation-resource-manager-cli.md
https://github.com/mimig1
https://github.com/squillace
https://github.com/v-thepet
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/dmakwana
https://github.com/tfitzmac
https://github.com/cynthn
https://github.com/JennieHubbard
https://github.com/v-anpasi
file:///D:/azure-docs-pr/_site/azure/.tmp/xplat-cli-install.html
file:///D:/azure-docs-pr/_site/azure/.tmp/xplat-cli-install.html
https://azure.microsoft.com/pricing/member-offers/msdn-benefits-details/
https://azure.microsoft.com/pricing/free-trial/

NOTE

If you don't have an Azure account, you see an error message indicating that you need a different type of account. To create

one from your current Azure account, see Creating a work or school identity in Azure Active Directory.

Open https://aka.ms/devicelogin in a browser and enter the code provided in the command output.

Once you've entered the code, select the identity you want to use in the browser and provide your user name and

password if needed.

You receive the following confirmation screen when you're successfully logged in, and you can then close the

browser window.

file:///D:/azure-docs-pr/_site/azure/.tmp/virtual-machines/virtual-machines-windows-create-aad-work-id.html?toc=%2fazure%2fvirtual-machines%2fwindows%2ftoc.json
https://aka.ms/devicelogin
https://aka.ms/devicelogin

/info: Added subscription Visual Studio Ultimate with MSDN

info: Setting subscription "Visual Studio Ultimate with MSDN" as default

+

info: login command OK

Switch to the Azure CLI resource group mode

azure config mode arm

info: Executing command config mode

info: New mode is arm

info: config mode command OK

Create or retrieve your resource group

azure group list

azure group create <resourcegroupname> <resourcegrouplocation>

azure group create new_res_group westus

The command shell also provides the following output:

In addition to the interactive login method described here, there are additional Azure CLI login methods available.

For more information about the other methods and information about handling multiple subscriptions, see

Connect to an Azure subscription from the Azure Command-Line Interface (Azure CLI).

By default, the Azure CLI starts in the service management mode (asmasm mode). Type the following to switch to

resource group mode.

Which provides the following output:

If needed, you can switch back to the default set of commands by typing azure config mode asm .

To create a DocumentDB account, you first need a resource group. If you already know the name of the resource

group that you'd like to use, then skip to Step 2.

To review a list of all your current resource groups, run the following command and take note of the resource

group name you'd like to use:

To create a resource group, run the following command, specify the name of the new resource group to create,

and the region in which to create the resource group:

<resourcegroupname> can only use alphanumeric characters, periods, underscores, the '-' character, and

parenthesis and cannot end in a period.

<resourcegrouplocation> must be one of the regions in which DocumentDB is generally available. The current

list of regions is provided on the Azure Regions page.

Example input:

Which produces the following output:

file:///D:/azure-docs-pr/_site/azure/.tmp/xplat-cli-connect.html
https://azure.microsoft.com/regions/#services

info: Executing command group create

+ Getting resource group new_res_group

+ Creating resource group new_res_group

info: Created resource group new_res_group

data: Id: /subscriptions/xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx/resourceGroups/new_res_group

data: Name: new_res_group

data: Location: westus

data: Provisioning State: Succeeded

data: Tags: null

data:

info: group create command OK

Understanding Resource Manager templates and resource groups

Task: Create a Single Region DocumentDB account

Create a Single Region DocumentDB account using Azure CLI without Resource Manager templates

TIP

azure resource create -g <resourcegroupname> -n <databaseaccountname> -r "Microsoft.DocumentDB/databaseAccounts"

-o 2015-04-08 -l <resourcegrouplocation> -p "{\"databaseAccountOfferType\":\"Standard\",\"locations\":["

{\"locationName\":\"<databaseaccountlocation>\",\"failoverPriority\":\"<failoverPriority>\"}"]}"

If you encounter errors, see Troubleshooting.

Most applications are built from a combination of different resource types (such as one or more DocumentDB

account, storage accounts, a virtual network, or a content delivery network). The default Azure service

management API and the Azure portal represented these items by using a service-by-service approach. This

approach requires you to deploy and manage the individual services individually (or find other tools that do so),

and not as a single logical unit of deployment.

Azure Resource Manager templates make it possible for you to deploy and manage these different resources as

one logical deployment unit in a declarative fashion. Instead of imperatively telling Azure what to deploy one

command after another, you describe your entire deployment in a JSON file -- all the resources and associated

configuration and deployment parameters -- and tell Azure to deploy those resources as one group.

You can learn lots more about Azure resource groups and what they can do for you in the Azure Resource

Manager overview. If you're interested in authoring templates, see Authoring Azure Resource Manager templates.

Use the instructions in this section to create a Single Region DocumentDB account. This can be accomplished using

Azure CLI with or without Resource Manager templates.

Create a DocumentDB account in the new or existing resource group by entering the following command at the

command prompt:

If you run this command in Azure PowerShell or Windows PowerShell you receive an error about an unexpected token.

Instead, run this command at the Windows Command Prompt.

<resourcegroupname> can only use alphanumeric characters, periods, underscores, the '-' character, and

parenthesis and cannot end in a period.

<resourcegrouplocation> is the region of the current resource group.

<databaseaccountname> can only use lowercase letters, numbers, the '-' character, and must be between 3 and

50 characters.

<databaseaccountlocation> must be one of the regions in which DocumentDB is generally available. The current

list of regions is provided on the Azure Regions page.

file:///D:/azure-docs-pr/_site/azure/.tmp/azure-resource-manager/resource-group-overview.html
file:///D:/azure-docs-pr/_site/azure/.tmp/resource-group-authoring-templates.html
https://azure.microsoft.com/regions/#services

azure resource create -g new_res_group -n samplecliacct -r "Microsoft.DocumentDB/databaseAccounts" -o 2015-04-08

-l westus -p "{\"databaseAccountOfferType\":\"Standard\",\"locations\":["

{\"locationName\":\"westus\",\"failoverPriority\":\"0\"}"]}"

info: Executing command resource create

+ Getting resource samplecliacct

+ Creating resource samplecliacct

info: Resource samplecliacct is updated

data:

data: Id: /subscriptions/xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx/resourceGroups/new_res_group/providers/Microsoft.DocumentDB/databaseAccounts/samplecliacct

data: Name: samplecliacct

data: Type: Microsoft.DocumentDB/databaseAccounts

data: Parent:

data: Location: West US

data: Tags:

data:

info: resource create command OK

Create a Single Region DocumentDB account using Azure CLI with Resource Manager templates

Example input:

Which produces the following output as your new account is provisioned:

If you encounter errors, see Troubleshooting.

After the command returns, the account will be in the CreatingCreating state for a few minutes, before it changes to the

OnlineOnline state in which it is ready for use. You can check on the status of the account in the Azure portal, on the

DocumentDB AccountsDocumentDB Accounts blade.

The instructions in this section describe how to create a DocumentDB account with an Azure Resource Manager

template and an optional parameters file, both of which are JSON files. Using a template enables you to describe

exactly what you want and repeat it without errors.

Create a local template file with the following content. Name the file azuredeploy.json.

https://portal.azure.com

{

 "$schema": "http://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "databaseAccountName": {

 "type": "string"

 },

 "locationName1": {

 "type": "string"

 }

 },

 "variables": {},

 "resources": [

 {

 "apiVersion": "2015-04-08",

 "type": "Microsoft.DocumentDb/databaseAccounts",

 "name": "[parameters('databaseAccountName')]",

 "location": "[resourceGroup().location]",

 "properties": {

 "databaseAccountOfferType": "Standard",

 "locations": [

 {

 "failoverPriority": 0,

 "locationName": "[parameters('locationName1')]"

 }

]

 }

 }

]

}

{

 "$schema": "http://schema.management.azure.com/schemas/2015-01-01/deploymentParameters.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "databaseAccountName": {

 "value": "samplearmacct"

 },

 "locationName1": {

 "value": "westus"

 }

 }

}

The failoverPriority must be set to 0 since this is a single region account. A failoverPriority of 0 indicates that this

region be kept as the write region for the DocumentDB account. You can either enter the value at the command

line, or create a parameter file to specify the value.

To create a parameters file, copy the following content into a new file and name the file

azuredeploy.parameters.json. If you plan on specifying the database account name at the command prompt, you

can continue without creating this file.

In the azuredeploy.parameters.json file, update the value field of "samplearmacct" to the database name you'd like

to use, then save the file. "databaseAccountName" can only use lowercase letters, numbers, the '-' character, and

must be between 3 and 50 characters. Update the value field of "locationName1" to the region where you would

like to create the DocumentDB account.

To create a DocumentDB account in your resource group, run the following command and provide the path to the

template file, the path to the parameter file or the parameter value, the name of the resource group in which to

deploy, and a deployment name (-n is optional).

To use a parameter file:

https://azure.microsoft.com/en-us/documentation/articles/documentdb-distribute-data-globally/#scaling-across-the-planet

azure group deployment create -f <PathToTemplate> -e <PathToParameterFile> -g <resourcegroupname> -n

<deploymentname>

azure group deployment create -f azuredeploy.json -e azuredeploy.parameters.json -g new_res_group -n azuredeploy

azure group deployment create -f <PathToTemplate> -g <resourcegroupname> -n <deploymentname>

azure group deployment create -f azuredeploy.json -g new_res_group -n azuredeploy

info: Executing command group deployment create

info: Supply values for the following parameters

databaseAccountName: samplearmacct

info: Executing command group deployment create

+ Initializing template configurations and parameters

+ Creating a deployment

info: Created template deployment "azuredeploy"

+ Waiting for deployment to complete

+

+

info: Resource 'new_res_group' of type 'Microsoft.DocumentDb/databaseAccounts' provisioning status is Running

+

info: Resource 'new_res_group' of type 'Microsoft.DocumentDb/databaseAccounts' provisioning status is

Succeeded

data: DeploymentName : azuredeploy

data: ResourceGroupName : new_res_group

data: ProvisioningState : Succeeded

data: Timestamp : 2015-11-30T18:50:23.6300288Z

data: Mode : Incremental

data: CorrelationId : 4a5d4049-c494-4053-bad4-cc804d454700

data: DeploymentParameters :

data: Name Type Value

data: ------------------- ------ ------------------

data: databaseAccountName String samplearmacct

data: locationName1 String westus

info: group deployment create command OK

<PathToTemplate> is the path to the azuredeploy.json file created in step 1. If your path name has spaces in it,

put double quotes around this parameter.

<PathToParameterFile> is the path to the azuredeploy.parameters.json file created in step 1. If your path name

has spaces in it, put double quotes around this parameter.

<resourcegroupname> is the name of the existing resource group in which to add a DocumentDB database

account.

<deploymentname> is the optional name of the deployment.

Example input:

OR to specify the database account name parameter without a parameter file, and instead get prompted for the

value, run the following command:

Example input which shows the prompt and entry for a database account named samplearmacct:

As the account is provisioned, you receive the following information:

If you encounter errors, see Troubleshooting.

After the command returns, the account will be in the CreatingCreating state for a few minutes, before it changes to the

OnlineOnline state in which it is ready for use. You can check on the status of the account in the Azure portal, on the

DocumentDB AccountsDocumentDB Accounts blade.

https://portal.azure.com

Task: Create a multi-region DocumentDB account

Create a multi-region DocumentDB account using Azure CLI without Resource Manager templates

TIP

azure resource create -g <resourcegroupname> -n <databaseaccountname> -r "Microsoft.DocumentDB/databaseAccounts"

-o 2015-04-08 -l <resourcegrouplocation> -p "{\"databaseAccountOfferType\":\"Standard\",\"locations\":["

{\"locationName\":\"<databaseaccountlocation1>\",\"failoverPriority\":\"<failoverPriority1>\"},

{\"locationName\":\"<databaseaccountlocation2>\",\"failoverPriority\":\"<failoverPriority2>\"}"]}"

azure resource create -g new_res_group -n samplecliacct -r "Microsoft.DocumentDB/databaseAccounts" -o 2015-04-08

-l westus -p "{\"databaseAccountOfferType\":\"Standard\",\"locations\":["

{\"locationName\":\"westus\",\"failoverPriority\":\"0\"},

{\"locationName\":\"eastus\",\"failoverPriority\":\"1\"}"]}"

info: Executing command resource create

+ Getting resource samplecliacct

+ Creating resource samplecliacct

info: Resource samplecliacct is updated

data:

data: Id: /subscriptions/xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx/resourceGroups/new_res_group/providers/Microsoft.DocumentDB/databaseAccounts/samplecliacct

data: Name: samplecliacct

data: Type: Microsoft.DocumentDB/databaseAccounts

data: Parent:

data: Location: West US

data: Tags:

data:

info: resource create command OK

DocumentDB has the capability to distribute your data globally across various Azure regions. When creating a

DocumentDB account, the regions in which you would like the service to exist can be specified. Use the instructions

in this section to create a multi-region DocumentDB account. This can be accomplished using Azure CLI with or

without Resource Manager templates.

Create a DocumentDB account in the new or existing resource group by entering the following command at the

command prompt:

If you run this command in Azure PowerShell or Windows PowerShell you receive an error about an unexpected token.

Instead, run this command at the Windows Command Prompt.

<resourcegroupname> can only use alphanumeric characters, periods, underscores, the '-' character, and

parenthesis and cannot end in a period.

<resourcegrouplocation> is the region of the current resource group.

<databaseaccountname> can only use lowercase letters, numbers, the '-' character, and must be between 3 and

50 characters.

<databaseaccountlocation1> and <databaseaccountlocation2> must be regions in which DocumentDB is

generally available. The current list of regions is provided on the Azure Regions page.

Example input:

Which produces the following output as your new account is provisioned:

If you encounter errors, see Troubleshooting.

After the command returns, the account will be in the CreatingCreating state for a few minutes, before it changes to the

OnlineOnline state in which it is ready for use. You can check on the status of the account in the Azure portal, on the

https://azure.microsoft.com/en-us/documentation/articles/documentdb-distribute-data-globally
https://azure.microsoft.com/regions/#services
https://azure.microsoft.com/regions/#services
https://portal.azure.com

 Create a multi-region DocumentDB account using Azure CLI with Resource Manager templates

{

 "$schema": "http://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "databaseAccountName": {

 "type": "string"

 },

 "locationName1": {

 "type": "string"

 },

 "locationName2": {

 "type": "string"

 }

 },

 "variables": {},

 "resources": [

 {

 "apiVersion": "2015-04-08",

 "type": "Microsoft.DocumentDb/databaseAccounts",

 "name": "[parameters('databaseAccountName')]",

 "location": "[resourceGroup().location]",

 "properties": {

 "databaseAccountOfferType": "Standard",

 "locations": [

 {

 "failoverPriority": 0,

 "locationName": "[parameters('locationName1')]"

 },

 {

 "failoverPriority": 1,

 "locationName": "[parameters('locationName2')]"

 }

]

 }

 }

]

}

DocumentDB AccountsDocumentDB Accounts blade.

The instructions in this section describe how to create a DocumentDB account with an Azure Resource Manager

template and an optional parameters file, both of which are JSON files. Using a template enables you to describe

exactly what you want and repeat it without errors.

Create a local template file with the following content. Name the file azuredeploy.json.

The preceding template file can be used to create a DocumentDB account with two regions. To create the account

with more regions, add it to the "locations" array and add the corresponding parameters.

One of the regions must have a failoverPriority value of 0 to indicate that this region be kept as the write region

for the DocumentDB account. The failover priority values must be unique among the locations and the highest

failover priority value must be less than the total number of regions. You can either enter the value at the

command line, or create a parameter file to specify the value.

To create a parameters file, copy the following content into a new file and name the file

azuredeploy.parameters.json. If you plan on specifying the database account name at the command prompt, you

can continue without creating this file.

https://azure.microsoft.com/en-us/documentation/articles/documentdb-distribute-data-globally/#scaling-across-the-planet

{

 "$schema": "http://schema.management.azure.com/schemas/2015-01-01/deploymentParameters.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "databaseAccountName": {

 "value": "samplearmacct"

 },

 "locationName1": {

 "value": "westus"

 },

 "locationName2": {

 "value": "eastus"

 }

 }

}

azure group deployment create -f <PathToTemplate> -e <PathToParameterFile> -g <resourcegroupname> -n

<deploymentname>

azure group deployment create -f azuredeploy.json -e azuredeploy.parameters.json -g new_res_group -n azuredeploy

azure group deployment create -f <PathToTemplate> -g <resourcegroupname> -n <deploymentname>

azure group deployment create -f azuredeploy.json -g new_res_group -n azuredeploy

info: Executing command group deployment create

info: Supply values for the following parameters

databaseAccountName: samplearmacct

In the azuredeploy.parameters.json file, update the value field of "samplearmacct" to the database name you'd like

to use, then save the file. "databaseAccountName" can only use lowercase letters, numbers, the '-' character, and

must be between 3 and 50 characters. Update the value field of "locationName1" and "locationName2" to the

region where you would like to create the DocumentDB account.

To create a DocumentDB account in your resource group, run the following command and provide the path to the

template file, the path to the parameter file or the parameter value, the name of the resource group in which to

deploy, and a deployment name (-n is optional).

To use a parameter file:

<PathToTemplate> is the path to the azuredeploy.json file created in step 1. If your path name has spaces in it,

put double quotes around this parameter.

<PathToParameterFile> is the path to the azuredeploy.parameters.json file created in step 1. If your path name

has spaces in it, put double quotes around this parameter.

<resourcegroupname> is the name of the existing resource group in which to add a DocumentDB database

account.

<deploymentname> is the optional name of the deployment.

Example input:

OR to specify the database account name parameter without a parameter file, and instead get prompted for the

value, run the following command:

Example input, which shows the prompt and entry for a database account named samplearmacct:

As the account is provisioned, you receive the following information:

info: Executing command group deployment create

+ Initializing template configurations and parameters

+ Creating a deployment

info: Created template deployment "azuredeploy"

+ Waiting for deployment to complete

+

+

info: Resource 'new_res_group' of type 'Microsoft.DocumentDb/databaseAccounts' provisioning status is Running

+

info: Resource 'new_res_group' of type 'Microsoft.DocumentDb/databaseAccounts' provisioning status is

Succeeded

data: DeploymentName : azuredeploy

data: ResourceGroupName : new_res_group

data: ProvisioningState : Succeeded

data: Timestamp : 2015-11-30T18:50:23.6300288Z

data: Mode : Incremental

data: CorrelationId : 4a5d4049-c494-4053-bad4-cc804d454700

data: DeploymentParameters :

data: Name Type Value

data: ------------------- ------ ------------------

data: databaseAccountName String samplearmacct

data: locationName1 String westus

data: locationName2 String eastus

info: group deployment create command OK

Troubleshooting

NOTE

If you encounter errors, see Troubleshooting.

After the command returns, the account will be in the CreatingCreating state for a few minutes, before it changes to the

OnlineOnline state in which it is ready for use. You can check on the status of the account in the Azure portal, on the

DocumentDB AccountsDocumentDB Accounts blade.

If you receive errors like Deployment provisioning state was not successful while creating your resource group or

database account, you have a few troubleshooting options.

Providing incorrect characters in the database account name or providing a location in which DocumentDB is not available

will cause deployment errors. Database account names can only use lowercase letters, numbers, the '-' character, and must

be between 3 and 50 characters. All valid database account locations are listed on the Azure Regions page.

If your output contains the following Error information has been recorded to C:\Users\wendy\.azure\azure.err ,

then review the error info in the azure.err file.

 azure group log show <resourcegroupname> --last-deployment

 azure group log show new_res_group --last-deployment

You may find useful info in the log file for the resource group. To view the log file, run the following

command:

Example input:

Then see Troubleshooting resource group deployments in Azure for additional information.

Error information is also available in the Azure portal as shown in the following screenshot. To navigate to

the error info: click Resource Groups in the Jumpbar, select the Resource Group that had the error, then in

the Essentials area of the Resource group blade click the date of the Last Deployment, then in the

https://portal.azure.com
https://azure.microsoft.com/regions/#services
file:///D:/azure-docs-pr/_site/azure/.tmp/resource-manager-troubleshoot-deployments-cli.html

Next steps

Deployment history blade select the failed deployment, then in the Deployment blade click the Operation

detail with the red exclamation mark. The Status Message for the failed deployment is displayed in the

Operation details blade.

Now that you have a DocumentDB account, the next step is to create a DocumentDB database. You can create a

database by using one of the following:

The Azure portal, as described in Create a DocumentDB database using the Azure portal.

The C# .NET samples in the DatabaseManagement project of the azure-documentdb-dotnet repository on

GitHub.

The DocumentDB SDKs. DocumentDB has .NET, Java, Python, Node.js, and JavaScript API SDKs.

After creating your database, you need to add one or more collections to the database, then add documents to the

collections.

After you have documents in a collection, you can use DocumentDB SQL to execute queries against your

documents by using the Query Explorer in the portal, the REST API, or one of the SDKs.

To learn more about DocumentDB, explore these resources:

Learning path for DocumentDB

DocumentDB resource model and concepts

For more templates you can use, see Azure Quickstart templates.

file:///D:/azure-docs-pr/_site/azure/.tmp/documentdb/documentdb-create-database.html
https://github.com/Azure/azure-documentdb-net/tree/master/samples/code-samples/DatabaseManagement
https://github.com/Azure/azure-documentdb-net/tree/master/samples/code-samples
https://msdn.microsoft.com/library/azure/dn781482.aspx
https://msdn.microsoft.com/library/azure/dn781481.aspx
https://msdn.microsoft.com/library/azure/dn781482.aspx
https://azure.microsoft.com/documentation/learning-paths/documentdb/
https://azure.microsoft.com/documentation/templates/

Ankur Shah • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • mimig

DocumentDB firewall support
11/15/2016 • 4 min to read • Edit on GitHub

Contributors

IP access control overview

Connections from cloud services

To secure data stored in an Azure DocumentDB database account, DocumentDB has provided support for a secret

based authorization model that utilizes a strong Hash-based message authentication code (HMAC). Now, in

addition to the secret based authorization model, DocumentDB supports policy driven IP-based access controls for

inbound firewall support. This model is very similar to the firewall rules of a traditional database system and

provides an additional level of security to the DocumentDB database account. With this model, you can now

configure a DocumentDB database account to be accessible only from an approved set of machines and/or cloud

services. Access to DocumentDB resources from these approved sets of machines and services still require the

caller to present a valid authorization token.

By default, a DocumentDB database account is accessible from public internet as long as the request is

accompanied by a valid authorization token. To configure IP policy-based access control, the user must provide the

set of IP addresses or IP address ranges in CIDR form to be included as the allowed list of client IPs for a given

database account. Once this configuration is applied, all requests originating from machines outside this allowed

list will be blocked by the server. The connection processing flow for the IP-based access control is described in the

following diagram.

In Azure, cloud services are a very common way for hosting middle tier service logic using DocumentDB. To enable

access to a DocumentDB database account from a cloud service, the public IP address of the cloud service must be

added to the allowed list of IP addresses associated with your DocumentDB database account by contacting Azure

support. This ensures that all role instances of cloud services have access to your DocumentDB database account.

You can retrieve IP addresses for your cloud services in the Azure portal, as shown in the following screenshot.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-firewall-support.md
https://github.com/shahankur11
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/mimig1
https://msdn.microsoft.com/library/azure/dn783368.aspx

Connections from virtual machines

When you scale out your cloud service by adding additional role instance(s), those new instances will automatically

have access to the DocumentDB database account since they are part of the same cloud service.

Virtual machines or virtual machine scale sets can also be used to host middle tier services using DocumentDB. To

configure the DocumentDB database account to allow access from virtual machines, public IP addresses of virtual

machine and/or virtual machine scale set must be configured as one of the allowed IP addresses for your

DocumentDB database account by contacting Azure support. You can retrieve IP addresses for virtual machines in

the Azure portal, as shown in the following screenshot.

When you add additional virtual machine instances to the group, they are automatically provided access to your

DocumentDB database account.

https://azure.microsoft.com/services/virtual-machines/
file:///D:/azure-docs-pr/_site/azure/.tmp/virtual-machine-scale-sets/virtual-machine-scale-sets-overview.html

Connections from the internet

Configuring the IP access control policy

When you access a DocumentDB database account from a computer on the internet, the client IP address or IP

address range of the machine must be added to the allowed list of IP address for the DocumentDB database

account.

Use the Azure portal to file a request with Azure Support to enable the IP access control policy on your database

account.

1. In the Help + support blade, select New support requestNew support request.

2. In the New support requestNew support request blade, select BasicsBasics .

3. In the BasicsBasics blade, select the following:

4. In the ProblemProblem blade, do the following:

5. In the Contact informationContact information blade, fill in your contact details and click CreateCreate.

Issue typeIssue type: Quota

Subscr iptionSubscr iption : The subscription associated with the account in which to add the IP access control policy.

Quota typeQuota type: DocumentDB

Support planSupport plan : Quota Support - Included.

Sever itySever ity : Select C - Minimal impact

DetailsDetails : Copy the following text into the box, and include your account name/s and IP address/es: "I

would like to enable firewall support for my DocumentDB database account. Database account: Include

account name/s. Allowed IP address/Ranges: Include IP address/range in CIDR format, for example

13.91.6.132, 13.91.6.1/24."

Click NextNext.

Once your request is received, IP access control should be enabled within 24 hours. You will be notified once the

request is complete.

https://portal.azure.com/?#blade/Microsoft_Azure_Support/HelpAndSupportBlade
https://portal.azure.com/?#blade/Microsoft_Azure_Support/HelpAndSupportBlade

Troubleshooting the IP access control policy

Portal operations

SDK & Rest API

Next steps

By enabling an IP access control policy for your DocumentDB database account, all access to your DocumentDB

database account from machines outside the configured allowed list of IP address ranges are blocked. By virtue of

this model, browsing the data plane operation from the portal will also be blocked to ensure the integrity of access

control.

For security reasons, access via SDK or REST API from machines not on the allowed list will return a generic 404

Not Found response with no additional details. Please verify the IP allowed list configured for your DocumentDB

database account to ensure the correct policy configuration is applied to your DocumentDB database account.

For information about network related performance tips, see Performance tips.

mimig • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil

Supercharge your DocumentDB account
11/15/2016 • 1 min to read • Edit on GitHub

Contributors

Change to user-defined performance in the Azure portal

Follow these steps to take advantage of increased throughput for your Azure DocumentDB S1 account. With little to

no additional cost, you can increase the throughput of your existing S1 account from 250 RU/s to 400 RU/s, or

more!

1. In your browser, navigate to the Azure portalAzure portal .

2. Click BrowseBrowse -> DocumentDB (NoSQL)DocumentDB (NoSQL) , then select the DocumentDB account to modify.

4. In the CollectionCollection blade, click MoreMore, and then click SettingsSettings .

3. In the DatabasesDatabases lens, select the database to modify, and then in the DatabaseDatabase blade, select the collection

with the S1 pricing tier.

5. In the SettingsSettings blade, click Pr icing TierPr icing Tier and notice that the monthly cost estimate for each plan is

displayed. In the Choose your pr icing tierChoose your pr icing tier blade, click S tandardStandard, and then click SelectSelect to save your

change.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-supercharge-your-account.md
https://github.com/mimig1
https://github.com/kiwhit
https://github.com/tysonn
https://portal.azure.com

NOTE

6. Back in the SettingsSettings blade, the Pr icing TierPr icing Tier is changed to S tandardStandard and the Throughput (RU/s)Throughput (RU/s) box is

displayed with a default value of 400. Click OKOK to save your changes.

You can set the throughput between 400 and 10,000 Request units/second (RU/s). The Pricing SummaryPricing Summary at the

bottom of the page updates automatically to provide an estimate of the monthly cost.

Next steps

7. Back on the DatabaseDatabase blade, you can verify the supercharged throughput of the collection.

For more information about the changes related to user-defined and pre-defined throughput, see the blog post

DocumentDB: Everything you need to know about using the new pricing options.

If you determine that you need more throughput (greater than 10,000 RU/s) or more storage (greater than 10GB)

you can create a partitioned collection. To create a partitioned collection, see Create a collection.

https://azure.microsoft.com/blog/documentdb-use-the-new-pricing-options-on-your-existing-collections/

arramac • mimig • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • Dene Hager • Ross McAllister

• Jennifer Hubbard

SQL query and SQL syntax in DocumentDB
11/22/2016 • 50 min to read • Edit on GitHub

Contributors

Microsoft Azure DocumentDB supports querying documents using SQL (Structured Query Language) as a

JSON query language. DocumentDB is truly schema-free. By virtue of its commitment to the JSON data model

directly within the database engine, it provides automatic indexing of JSON documents without requiring

explicit schema or creation of secondary indexes.

While designing the query language for DocumentDB we had two goals in mind:

Instead of inventing a new JSON query language, we wanted to support SQL. SQL is one of the most

familiar and popular query languages. DocumentDB SQL provides a formal programming model for rich

queries over JSON documents.

As a JSON document database capable of executing JavaScript directly in the database engine, we wanted

to use JavaScript's programming model as the foundation for our query language. The DocumentDB SQL is

rooted in JavaScript's type system, expression evaluation, and function invocation. This in-turn provides a

natural programming model for relational projections, hierarchical navigation across JSON documents, self

joins, spatial queries, and invocation of user defined functions (UDFs) written entirely in JavaScript, among

other features.

We believe that these capabilities are key to reducing the friction between the application and the database

and are crucial for developer productivity.

We recommend getting started by watching the following video, where Aravind Ramachandran shows

DocumentDB's querying capabilities, and by visiting our Query Playground, where you can try out

DocumentDB and run SQL queries against our dataset.

Then, return to this article, where we'll start with a SQL query tutorial that walks you through some simple

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-sql-query.md
https://github.com/arramac
https://github.com/mimig1
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/deneha
https://github.com/rmca14
https://github.com/JennieHubbard
http://www.documentdb.com/sql/demo

Getting started with SQL commands in DocumentDB

{

 "id": "AndersenFamily",

 "lastName": "Andersen",

 "parents": [

 { "firstName": "Thomas" },

 { "firstName": "Mary Kay"}

],

 "children": [

 {

 "firstName": "Henriette Thaulow", "gender": "female", "grade": 5,

 "pets": [{ "givenName": "Fluffy" }]

 }

],

 "address": { "state": "WA", "county": "King", "city": "seattle" },

 "creationDate": 1431620472,

 "isRegistered": true

}

{

 "id": "WakefieldFamily",

 "parents": [

 { "familyName": "Wakefield", "givenName": "Robin" },

 { "familyName": "Miller", "givenName": "Ben" }

],

 "children": [

 {

 "familyName": "Merriam",

 "givenName": "Jesse",

 "gender": "female", "grade": 1,

 "pets": [

 { "givenName": "Goofy" },

 { "givenName": "Shadow" }

]

 },

 {

 "familyName": "Miller",

 "givenName": "Lisa",

 "gender": "female",

 "grade": 8 }

],

 "address": { "state": "NY", "county": "Manhattan", "city": "NY" },

 "creationDate": 1431620462,

 "isRegistered": false

}

JSON documents and SQL commands.

To see DocumentDB SQL at work, let's begin with a few simple JSON documents and walk through some

simple queries against it. Consider these two JSON documents about two families. Note that with

DocumentDB, we do not need to create any schemas or secondary indices explicitly. We simply need to insert

the JSON documents to a DocumentDB collection and subsequently query. Here we have a simple JSON

document for the Andersen family, the parents, children (and their pets), address and registration information.

The document has strings, numbers, booleans, arrays and nested properties.

DocumentDocument

Here's a second document with one subtle difference – givenName and familyName are used instead of

firstName and lastName .

DocumentDocument

SELECT *

FROM Families f

WHERE f.id = "AndersenFamily"

[{

 "id": "AndersenFamily",

 "lastName": "Andersen",

 "parents": [

 { "firstName": "Thomas" },

 { "firstName": "Mary Kay"}

],

 "children": [

 {

 "firstName": "Henriette Thaulow", "gender": "female", "grade": 5,

 "pets": [{ "givenName": "Fluffy" }]

 }

],

 "address": { "state": "WA", "county": "King", "city": "seattle" },

 "creationDate": 1431620472,

 "isRegistered": true

}]

SELECT {"Name":f.id, "City":f.address.city} AS Family

FROM Families f

WHERE f.address.city = f.address.state

[{

 "Family": {

 "Name": "WakefieldFamily",

 "City": "NY"

 }

}]

SELECT c.givenName

FROM Families f

JOIN c IN f.children

WHERE f.id = 'WakefieldFamily'

ORDER BY f.address.city ASC

Now let's try a few queries against this data to understand some of the key aspects of DocumentDB SQL. For

example, the following query will return the documents where the id field matches AndersenFamily . Since it's a

SELECT * , the output of the query is the complete JSON document:

QueryQuery

ResultsResults

Now consider the case where we need to reformat the JSON output in a different shape. This query projects a

new JSON object with two selected fields, Name and City, when the address' city has the same name as the

state. In this case, "NY, NY" matches.

QueryQuery

ResultsResults

The next query returns all the given names of children in the family whose id matches WakefieldFamily

ordered by the city of residence.

QueryQuery

[

 { "givenName": "Jesse" },

 { "givenName": "Lisa"}

]

DocumentDB indexing

Basics of a DocumentDB SQL query

ResultsResults

We would like to draw attention to a few noteworthy aspects of the DocumentDB query language through the

examples we've seen so far:

Since DocumentDB SQL works on JSON values, it deals with tree shaped entities instead of rows and

columns. Therefore, the language lets you refer to nodes of the tree at any arbitrary depth, like

Node1.Node2.Node3…..Nodem , similar to relational SQL referring to the two part reference of

<table>.<column> .

The structured query language works with schema-less data. Therefore, the type system needs to be bound

dynamically. The same expression could yield different types on different documents. The result of a query

is a valid JSON value, but is not guaranteed to be of a fixed schema.

DocumentDB only supports strict JSON documents. This means the type system and expressions are

restricted to deal only with JSON types. Please refer to the JSON specification for more details.

A DocumentDB collection is a schema-free container of JSON documents. The relations in data entities

within and across documents in a collection are implicitly captured by containment and not by primary key

and foreign key relations. This is an important aspect worth pointing out in light of the intra-document

joins discussed later in this article.

Before we get into the DocumentDB SQL syntax, it is worth exploring the indexing design in DocumentDB.

The purpose of database indexes is to serve queries in their various forms and shapes with minimum resource

consumption (like CPU and input/output) while providing good throughput and low latency. Often, the choice

of the right index for querying a database requires much planning and experimentation. This approach poses a

challenge for schema-less databases where the data doesn’t conform to a strict schema and evolves rapidly.

Therefore, when we designed the DocumentDB indexing subsystem, we set the following goals:

Index documents without requiring schema: The indexing subsystem does not require any schema

information or make any assumptions about schema of the documents.

Support for efficient, rich hierarchical, and relational queries: The index supports the DocumentDB query

language efficiently, including support for hierarchical and relational projections.

Support for consistent queries in face of a sustained volume of writes: For high write throughput workloads

with consistent queries, the index is updated incrementally, efficiently, and online in the face of a sustained

volume of writes. The consistent index update is crucial to serve the queries at the consistency level in

which the user configured the document service.

Support for multi-tenancy: Given the reservation based model for resource governance across tenants,

index updates are performed within the budget of system resources (CPU, memory, and input/output

operations per second) allocated per replica.

Storage efficiency: For cost effectiveness, the on-disk storage overhead of the index is bounded and

predictable. This is crucial because DocumentDB allows the developer to make cost based tradeoffs

between index overhead in relation to the query performance.

Refer to the DocumentDB samples on MSDN for samples showing how to configure the indexing policy for a

collection. Let’s now get into the details of the DocumentDB SQL syntax.

http://www.json.org/
https://github.com/Azure/azure-documentdb-net

SELECT [TOP <top_expression>] <select_list>

[FROM <from_specification>]

[WHERE <filter_condition>]

[ORDER BY <sort_specification]

FROM clause

Sub-documents

SELECT *

FROM Families.children

Every query consists of a SELECT clause and optional FROM and WHERE clauses per ANSI-SQL standards.

Typically, for each query, the source in the FROM clause is enumerated. Then the filter in the WHERE clause is

applied on the source to retrieve a subset of JSON documents. Finally, the SELECT clause is used to project the

requested JSON values in the select list.

The FROM <from_specification> clause is optional unless the source is filtered or projected later in the query.

The purpose of this clause is to specify the data source upon which the query must operate. Commonly the

whole collection is the source, but one can specify a subset of the collection instead.

A query like SELECT * FROM Families indicates that the entire Families collection is the source over which to

enumerate. A special identifier ROOT can be used to represent the collection instead of using the collection

name. The following list contains the rules that are enforced per query:

The collection can be aliased, such as SELECT f.id FROM Families AS f or simply

SELECT f.id FROM Families f . Here f is the equivalent of Families . AS is an optional keyword to alias

the identifier.

Note that once aliased, the original source cannot be bound. For example,

SELECT Families.id FROM Families f is syntactically invalid since the identifier "Families" cannot be resolved

anymore.

All properties that need to be referenced must be fully qualified. In the absence of strict schema adherence,

this is enforced to avoid any ambiguous bindings. Therefore, SELECT id FROM Families f is syntactically

invalid since the property id is not bound.

The source can also be reduced to a smaller subset. For instance, to enumerating only a sub-tree in each

document, the sub-root could then become the source, as shown in the following example.

QueryQuery

ResultsResults

[

 [

 {

 "firstName": "Henriette Thaulow",

 "gender": "female",

 "grade": 5,

 "pets": [

 {

 "givenName": "Fluffy"

 }

]

 }

],

 [

 {

 "familyName": "Merriam",

 "givenName": "Jesse",

 "gender": "female",

 "grade": 1

 },

 {

 "familyName": "Miller",

 "givenName": "Lisa",

 "gender": "female",

 "grade": 8

 }

]

]

SELECT *

FROM Families.address.state

[

 "WA",

 "NY"

]

WHERE clause

While the above example used an array as the source, an object could also be used as the source, which is

what's shown in the following example. Any valid JSON value (not undefined) that can be found in the source

will be considered for inclusion in the result of the query. If some families don’t have an address.state value,

they will be excluded in the query result.

QueryQuery

ResultsResults

The WHERE clause (WHERE <filter_condition>) is optional. It specifies the condition(s) that the JSON

documents provided by the source must satisfy in order to be included as part of the result. Any JSON

document must evaluate the specified conditions to "true" to be considered for the result. The WHERE clause is

used by the index layer in order to determine the absolute smallest subset of source documents that can be

part of the result.

The following query requests documents that contain a name property whose value is AndersenFamily . Any

other document that does not have a name property, or where the value does not match AndersenFamily is

excluded.

QueryQuery

SELECT f.address

FROM Families f

WHERE f.id = "AndersenFamily"

[{

 "address": {

 "state": "WA",

 "county": "King",

 "city": "seattle"

 }

}]

Arithmetic +,-,*,/,%

Bitwise |, &, ^, <<, >>, >>> (zero-fill right shift)

Logical AND, OR, NOT

Comparison =, !=, <, >, <=, >=, <>

String || (concatenate)

SELECT *

FROM Families.children[0] c

WHERE c.grade % 2 = 1 -- matching grades == 5, 1

SELECT *

FROM Families.children[0] c

WHERE c.grade ^ 4 = 1 -- matching grades == 5

SELECT *

FROM Families.children[0] c

WHERE c.grade >= 5 -- matching grades == 5

ResultsResults

The previous example showed a simple equality query. DocumentDB SQL also supports a variety of scalar

expressions. The most commonly used are binary and unary expressions. Property references from the source

JSON object are also valid expressions.

The following binary operators are currently supported and can be used in queries as shown in the following

examples:

Let’s take a look at some queries using binary operators.

The unary operators +,-, ~ and NOT are also supported, and can be used inside queries as shown in the

following example:

SELECT *

FROM Families.children[0] c

WHERE NOT(c.grade = 5) -- matching grades == 1

SELECT *

FROM Families.children[0] c

WHERE (-c.grade = -5) -- matching grades == 5

Equality and comparison operators

OO
pp

UU
nn
dd
ee
fifi
nn
ee
dd

NN
uu
llll

BB
oo
oo
ll
ee
aa
nn

NN
uu
mm
bb
ee
rr

SS
tt
riri
nn
gg

OO
bb
jj
ee
cc
tt

AA
rr
rr
aa
yy

UU
nn
dd
ee
fifi
nn
ee
dd

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

NN
uu
llll

U
n
d
e
fi
n
e
d

OO
KK

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

BB
oo
oo
ll
ee
aa
nn

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

OO
KK

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

In addition to binary and unary operators, property references are also allowed. For example,

SELECT * FROM Families f WHERE f.isRegistered returns the JSON document containing the property

isRegistered where the property's value is equal to the JSON true value. Any other values (false, null,

Undefined, <number> , <string> , <object> , <array> , etc.) leads to the source document being excluded from

the result.

The following table shows the result of equality comparisons in DocumentDB SQL between any two JSON

types.

NN
uu
mm
bb
ee
rr

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

OO
KK

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

SS
tt
rr
ii
nn
gg

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

OO
KK

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

OO
bb
jj
ee
cc
tt

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

OO
KK

U
n
d
e
fi
n
e
d

AA
rr
rr
aa
yy

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

OO
KK

BETWEEN keyword

SELECT *

FROM Families.children[0] c

WHERE c.grade BETWEEN 1 AND 5

SELECT (c.grade BETWEEN 0 AND 10)

FROM Families.children[0] c

For other comparison operators such as >, >=, !=, < and <=, the following rules apply:

Comparison across types results in Undefined.

Comparison between two objects or two arrays results in Undefined.

If the result of the scalar expression in the filter is Undefined, the corresponding document would not be

included in the result, since Undefined doesn't logically equate to "true".

You can also use the BETWEEN keyword to express queries against ranges of values like in ANSI SQL.

BETWEEN can be used against strings or numbers.

For example, this query returns all family documents in which the first child's grade is between 1-5 (both

inclusive).

Unlike in ANSI-SQL, you can also use the BETWEEN clause in the FROM clause like in the following example.

Logical (AND, OR and NOT) operators

OROR TRUETRUE FALSEFALSE UNDEFINEDUNDEFINED

True True True True

False True False Undefined

Undefined True Undefined Undefined

ANDAND TRUETRUE FALSEFALSE UNDEFINEDUNDEFINED

True True False Undefined

False False False False

Undefined Undefined False Undefined

NOTNOT

True False

False True

Undefined Undefined

IN keyword

SELECT *

FROM Families

WHERE Families.id IN ('AndersenFamily', 'WakefieldFamily')

SELECT *

FROM Families

WHERE Families.address.state IN ("NY", "WA", "CA", "PA", "OH", "OR", "MI", "WI", "MN", "FL")

Ternary (?) and Coalesce (??) operators

For faster query execution times, remember to create an indexing policy that uses a range index type against

any numeric properties/paths that are filtered in the BETWEEN clause.

The main difference between using BETWEEN in DocumentDB and ANSI SQL is that you can express range

queries against properties of mixed types – for example, you might have "grade" be a number (5) in some

documents and strings in others ("grade4"). In these cases, like in JavaScript, a comparison between two

different types results in "undefined", and the document will be skipped.

Logical operators operate on Boolean values. The logical truth tables for these operators are shown in the

following tables.

The IN keyword can be used to check whether a specified value matches any value in a list. For example, this

query returns all family documents where the id is one of "WakefieldFamily" or "AndersenFamily".

This example returns all documents where the state is any of the specified values.

The Ternary and Coalesce operators can be used to build conditional expressions, similar to popular

programming languages like C# and JavaScript.

 SELECT (c.grade < 5)? "elementary": "other" AS gradeLevel

 FROM Families.children[0] c

SELECT (c.grade < 5)? "elementary": ((c.grade < 9)? "junior": "high") AS gradeLevel

FROM Families.children[0] c

SELECT f.lastName ?? f.surname AS familyName

FROM Families f

Quoted property accessor

SELECT f["lastName"]

FROM Families f

WHERE f["id"] = "AndersenFamily"

SELECT clause

SELECT f.address

FROM Families f

WHERE f.id = "AndersenFamily"

The Ternary (?) operator can be very handy when constructing new JSON properties on the fly. For example,

now you can write queries to classify the class levels into a human readable form like

Beginner/Intermediate/Advanced as shown below.

You can also nest the calls to the operator like in the query below.

As with other query operators, if the referenced properties in the conditional expression are missing in any

document, or if the types being compared are different, then those documents will be excluded in the query

results.

The Coalesce (??) operator can be used to efficiently check for the presence of a property (a.k.a. is defined) in a

document. This is useful when querying against semi-structured or data of mixed types. For example, this

query returns the "lastName" if present, or the "surname" if it isn't present.

You can also access properties using the quoted property operator [] . For example, SELECT c.grade and

SELECT c["grade"] are equivalent. This syntax is useful when you need to escape a property that contains

spaces, special characters, or happens to share the same name as a SQL keyword or reserved word.

The SELECT clause (SELECT <select_list>) is mandatory and specifies what values will be retrieved from the

query, just like in ANSI-SQL. The subset that's been filtered on top of the source documents are passed onto

the projection phase, where the specified JSON values are retrieved and a new JSON object is constructed, for

each input passed onto it.

The following example shows a typical SELECT query.

QueryQuery

ResultsResults

[{

 "address": {

 "state": "WA",

 "county": "King",

 "city": "seattle"

 }

}]

Nested properties

SELECT f.address.state, f.address.city

FROM Families f

WHERE f.id = "AndersenFamily"

[{

 "state": "WA",

 "city": "seattle"

}]

SELECT { "state": f.address.state, "city": f.address.city, "name": f.id }

FROM Families f

WHERE f.id = "AndersenFamily"

[{

 "$1": {

 "state": "WA",

 "city": "seattle",

 "name": "AndersenFamily"

 }

}]

SELECT { "state": f.address.state, "city": f.address.city },

 { "name": f.id }

FROM Families f

WHERE f.id = "AndersenFamily"

In the following example, we are projecting two nested properties f.address.state and f.address.city .

QueryQuery

ResultsResults

Projection also supports JSON expressions as shown in the following example.

QueryQuery

ResultsResults

Let's look at the role of $1 here. The SELECT clause needs to create a JSON object and since no key is

provided, we use implicit argument variable names starting with $1 . For example, this query returns two

implicit argument variables, labeled $1 and $2 .

QueryQuery

ResultsResults

[{

 "$1": {

 "state": "WA",

 "city": "seattle"

 },

 "$2": {

 "name": "AndersenFamily"

 }

}]

Aliasing

SELECT

 { "state": f.address.state, "city": f.address.city } AS AddressInfo,

 { "name": f.id } NameInfo

FROM Families f

WHERE f.id = "AndersenFamily"

[{

 "AddressInfo": {

 "state": "WA",

 "city": "seattle"

 },

 "NameInfo": {

 "name": "AndersenFamily"

 }

}]

Scalar expressions

SELECT "Hello World"

[{

 "$1": "Hello World"

}]

SELECT ((2 + 11 % 7)-2)/3

Now let's extend the example above with explicit aliasing of values. AS is the keyword used for aliasing. Note

that it's optional as shown while projecting the second value as NameInfo .

In case a query has two properties with the same name, aliasing must be used to rename one or both of the

properties so that they are disambiguated in the projected result.

QueryQuery

ResultsResults

In addition to property references, the SELECT clause also supports scalar expressions like constants, arithmetic

expressions, logical expressions, etc. For example, here's a simple "Hello World" query.

QueryQuery

ResultsResults

Here's a more complex example that uses a scalar expression.

QueryQuery

ResultsResults

[{

 "$1": 1.33333

}]

SELECT f.address.city = f.address.state AS AreFromSameCityState

FROM Families f

[

 {

 "AreFromSameCityState": false

 },

 {

 "AreFromSameCityState": true

 }

]

Object and array creation

SELECT [f.address.city, f.address.state] AS CityState

FROM Families f

[

 {

 "CityState": [

 "seattle",

 "WA"

]

 },

 {

 "CityState": [

 "NY",

 "NY"

]

 }

]

VALUE keyword

SELECT VALUE "Hello World"

In the following example, the result of the scalar expression is a Boolean.

QueryQuery

ResultsResults

Another key feature of DocumentDB SQL is array/object creation. In the previous example, note that we

created a new JSON object. Similarly, one can also construct arrays as shown in the following examples.

QueryQuery

ResultsResults

The VALUEVALUE keyword provides a way to return JSON value. For example, the query shown below returns the

scalar "Hello World" instead of {$1: "Hello World"} .

QueryQuery

ResultsResults

[

 "Hello World"

]

SELECT VALUE f.address

FROM Families f

[

 {

 "state": "WA",

 "county": "King",

 "city": "seattle"

 },

 {

 "state": "NY",

 "county": "Manhattan",

 "city": "NY"

 }

]

SELECT VALUE f.address.state

FROM Families f

[

 "WA",

 "NY"

]

* Operator

SELECT *

FROM Families f

WHERE f.id = "AndersenFamily"

The following query returns the JSON value without the "address" label in the results.

QueryQuery

ResultsResults

The following example extends this to show how to return JSON primitive values (the leaf level of the JSON

tree).

QueryQuery

ResultsResults

The special operator (*) is supported to project the document as-is. When used, it must be the only projected

field. While a query like SELECT * FROM Families f is valid, SELECT VALUE * FROM Families f and

SELECT *, f.id FROM Families f are not valid.

QueryQuery

ResultsResults

[{

 "id": "AndersenFamily",

 "lastName": "Andersen",

 "parents": [

 { "firstName": "Thomas" },

 { "firstName": "Mary Kay"}

],

 "children": [

 {

 "firstName": "Henriette Thaulow", "gender": "female", "grade": 5,

 "pets": [{ "givenName": "Fluffy" }]

 }

],

 "address": { "state": "WA", "county": "King", "city": "seattle" },

 "creationDate": 1431620472,

 "isRegistered": true

}]

TOP Operator

SELECT TOP 1 *

FROM Families f

[{

 "id": "AndersenFamily",

 "lastName": "Andersen",

 "parents": [

 { "firstName": "Thomas" },

 { "firstName": "Mary Kay"}

],

 "children": [

 {

 "firstName": "Henriette Thaulow", "gender": "female", "grade": 5,

 "pets": [{ "givenName": "Fluffy" }]

 }

],

 "address": { "state": "WA", "county": "King", "city": "seattle" },

 "creationDate": 1431620472,

 "isRegistered": true

}]

ORDER BY clause

The TOP keyword can be used to limit the number of values from a query. When TOP is used in conjunction

with the ORDER BY clause, the result set is limited to the first N number of ordered values; otherwise, it returns

the first N number of results in an undefined order. As a best practice, in a SELECT statement, always use an

ORDER BY clause with the TOP clause. This is the only way to predictably indicate which rows are affected by

TOP.

QueryQuery

ResultsResults

TOP can be used with a constant value (as shown above) or with a variable value using parameterized queries.

For more details, please see parameterized queries below.

Like in ANSI-SQL, you can include an optional Order By clause while querying. The clause can include an

optional ASC/DESC argument to specify the order in which results must be retrieved. For a more detailed look

at Order By, refer to DocumentDB Order By Walkthrough.

For example, here's a query that retrieves families in order of the resident city's name.

file:///D:/azure-docs-pr/_site/azure/.tmp/documentdb/documentdb-orderby.html

SELECT f.id, f.address.city

FROM Families f

ORDER BY f.address.city

[

 {

 "id": "WakefieldFamily",

 "city": "NY"

 },

 {

 "id": "AndersenFamily",

 "city": "Seattle"

 }

]

SELECT f.id, f.creationDate

FROM Families f

ORDER BY f.creationDate DESC

[

 {

 "id": "WakefieldFamily",

 "creationDate": 1431620462

 },

 {

 "id": "AndersenFamily",

 "creationDate": 1431620472

 }

]

Advanced database concepts and SQL queries

Iteration

SELECT *

FROM Families.children

QueryQuery

ResultsResults

And here's a query that retrieves families in order of creation date, which is stored as a number representing

the epoch time, i.e, elapsed time since Jan 1, 1970 in seconds.

QueryQuery

ResultsResults

A new construct was added via the ININ keyword in DocumentDB SQL to provide support for iterating over

JSON arrays. The FROM source provides support for iteration. Let's start with the following example:

QueryQuery

ResultsResults

[

 [

 {

 "firstName": "Henriette Thaulow",

 "gender": "female",

 "grade": 5,

 "pets": [{ "givenName": "Fluffy"}]

 }

],

 [

 {

 "familyName": "Merriam",

 "givenName": "Jesse",

 "gender": "female",

 "grade": 1

 },

 {

 "familyName": "Miller",

 "givenName": "Lisa",

 "gender": "female",

 "grade": 8

 }

]

]

SELECT *

FROM c IN Families.children

[

 {

 "firstName": "Henriette Thaulow",

 "gender": "female",

 "grade": 5,

 "pets": [{ "givenName": "Fluffy" }]

 },

 {

 "familyName": "Merriam",

 "givenName": "Jesse",

 "gender": "female",

 "grade": 1

 },

 {

 "familyName": "Miller",

 "givenName": "Lisa",

 "gender": "female",

 "grade": 8

 }

]

SELECT c.givenName

FROM c IN Families.children

WHERE c.grade = 8

Now let's look at another query that performs iteration over children in the collection. Note the difference in

the output array. This example splits children and flattens the results into a single array.

QueryQuery

ResultsResults

This can be further used to filter on each individual entry of the array as shown in the following example.

QueryQuery

[{

 "givenName": "Lisa"

}]

Joins

SELECT f.id

FROM Families f

JOIN f.NonExistent

[{

}]

SELECT f.id

FROM Families f

JOIN f.children

[

 {

 "id": "AndersenFamily"

 },

 {

 "id": "WakefieldFamily"

 }

]

ResultsResults

In a relational database, the need to join across tables is very important. It's the logical corollary to designing

normalized schemas. Contrary to this, DocumentDB deals with the denormalized data model of schema-free

documents. This is the logical equivalent of a "self-join".

The syntax that the language supports is JOIN JOIN ... JOIN . Overall, this returns a set of NN -tuples (tuple with

NN values). Each tuple has values produced by iterating all collection aliases over their respective sets. In other

words, this is a full cross product of the sets participating in the join.

The following examples show how the JOIN clause works. In the following example, the result is empty since

the cross product of each document from source and an empty set is empty.

QueryQuery

ResultsResults

In the following example, the join is between the document root and the children sub-root. It's a cross

product between two JSON objects. The fact that children is an array is not effective in the JOIN since we are

dealing with a single root that is the children array. Hence the result contains only two results, since the cross

product of each document with the array yields exactly only one document.

QueryQuery

ResultsResults

The following example shows a more conventional join:

QueryQuery

SELECT f.id

FROM Families f

JOIN c IN f.children

[

 {

 "id": "AndersenFamily"

 },

 {

 "id": "WakefieldFamily"

 },

 {

 "id": "WakefieldFamily"

 }

]

SELECT

 f.id AS familyName,

 c.givenName AS childGivenName,

 c.firstName AS childFirstName,

 p.givenName AS petName

FROM Families f

JOIN c IN f.children

JOIN p IN c.pets

ResultsResults

The first thing to note is that the from_source of the JOINJOIN clause is an iterator. So, the flow in this case is as

follows:

Expand each child element cc in the array.

Apply a cross product with the root of the document ff with each child element cc that was flattened in the

first step.

Finally, project the root object ff name property alone.

The first document (AndersenFamily) contains only one child element, so the result set contains only a single

object corresponding to this document. The second document (WakefieldFamily) contains two children. So, the

cross product produces a separate object for each child, thereby resulting in two objects, one for each child

corresponding to this document. Note that the root fields in both these documents will be same, just as you

would expect in a cross product.

The real utility of the JOIN is to form tuples from the cross-product in a shape that's otherwise difficult to

project. Furthermore, as we will see in the example below, you could filter on the combination of a tuple that

lets' the user chose a condition satisfied by the tuples overall.

QueryQuery

ResultsResults

[

 {

 "familyName": "AndersenFamily",

 "childFirstName": "Henriette Thaulow",

 "petName": "Fluffy"

 },

 {

 "familyName": "WakefieldFamily",

 "childGivenName": "Jesse",

 "petName": "Goofy"

 },

 {

 "familyName": "WakefieldFamily",

 "childGivenName": "Jesse",

 "petName": "Shadow"

 }

]

for-each(Family f in Families)

{

 for-each(Child c in f.children)

 {

 for-each(Pet p in c.pets)

 {

 return (Tuple(f.id AS familyName,

 c.givenName AS childGivenName,

 c.firstName AS childFirstName,

 p.givenName AS petName));

 }

 }

}

SELECT

 f.id AS familyName,

 c.givenName AS childGivenName,

 c.firstName AS childFirstName,

 p.givenName AS petName

FROM Families f

JOIN c IN f.children

JOIN p IN c.pets

WHERE p.givenName = "Shadow"

This example is a natural extension of the preceding example, and performs a double join. So, the cross

product can be viewed as the following pseudo-code.

AndersenFamily has one child who has one pet. So, the cross product yields one row (111) from this family.

WakefieldFamily however has two children, but only one child "Jesse" has pets. Jesse has 2 pets though. Hence

the cross product yields 112 = 2 rows from this family.

In the next example, there is an additional filter on pet . This excludes all the tuples where the pet name is not

"Shadow". Notice that we are able to build tuples from arrays, filter on any of the elements of the tuple, and

project any combination of the elements.

QueryQuery

ResultsResults

[

 {

 "familyName": "WakefieldFamily",

 "childGivenName": "Jesse",

 "petName": "Shadow"

 }

]

JavaScript integration

User Defined Functions (UDFs)

 UserDefinedFunction regexMatchUdf = new UserDefinedFunction

 {

 Id = "REGEX_MATCH",

 Body = @"function (input, pattern) {

 return input.match(pattern) !== null;

 };",

 };

 UserDefinedFunction createdUdf = client.CreateUserDefinedFunctionAsync(

 UriFactory.CreateDocumentCollectionUri("testdb", "families"),

 regexMatchUdf).Result;

DocumentDB provides a programming model for executing JavaScript based application logic directly on the

collections in terms of stored procedures and triggers. This allows for both:

Ability to do high performance transactional CRUD operations and queries against documents in a

collection by virtue of the deep integration of JavaScript runtime directly within the database engine.

A natural modeling of control flow, variable scoping, and assignment and integration of exception handling

primitives with database transactions. For more details about DocumentDB support for JavaScript

integration, please refer to the JavaScript server side programmability documentation.

Along with the types already defined in this article, DocumentDB SQL provides support for User Defined

Functions (UDF). In particular, scalar UDFs are supported where the developers can pass in zero or many

arguments and return a single argument result back. Each of these arguments are checked for being legal

JSON values.

The DocumentDB SQL syntax is extended to support custom application logic using these User Defined

Functions. UDFs can be registered with DocumentDB and then be referenced as part of a SQL query. In fact, the

UDFs are exquisitely designed to be invoked by queries. As a corollary to this choice, UDFs do not have access

to the context object which the other JavaScript types (stored procedures and triggers) have. Since queries

execute as read-only, they can run either on primary or on secondary replicas. Therefore, UDFs are designed to

run on secondary replicas unlike other JavaScript types.

Below is an example of how a UDF can be registered at the DocumentDB database, specifically under a

document collection.

The preceding example creates a UDF whose name is REGEX_MATCH . It accepts two JSON string values input

and pattern and checks if the first matches the pattern specified in the second using JavaScript's

string.match() function.

We can now use this UDF in a query in a projection. UDFs must be qualified with the case-sensitive prefix

"udf." when called from within queries.

NOTE

SELECT udf.REGEX_MATCH(Families.address.city, ".*eattle")

FROM Families

[

 {

 "$1": true

 },

 {

 "$1": false

 }

]

SELECT Families.id, Families.address.city

FROM Families

WHERE udf.REGEX_MATCH(Families.address.city, ".*eattle")

[{

 "id": "AndersenFamily",

 "city": "Seattle"

}]

 UserDefinedFunction seaLevelUdf = new UserDefinedFunction()

 {

 Id = "SEALEVEL",

 Body = @"function(city) {

 switch (city) {

 case 'seattle':

 return 520;

 case 'NY':

 return 410;

 case 'Chicago':

 return 673;

 default:

 return -1;

 }"

 };

 UserDefinedFunction createdUdf = await client.CreateUserDefinedFunctionAsync(

 UriFactory.CreateDocumentCollectionUri("testdb", "families"),

 seaLevelUdf);

Prior to 3/17/2015, DocumentDB supported UDF calls without the "udf." prefix like SELECT REGEX_MATCH(). This calling

pattern has been deprecated.

QueryQuery

ResultsResults

The UDF can also be used inside a filter as shown in the example below, also qualified with the "udf." prefix :

QueryQuery

ResultsResults

In essence, UDFs are valid scalar expressions and can be used in both projections and filters.

To expand on the power of UDFs, let's look at another example with conditional logic:

SELECT f.address.city, udf.SEALEVEL(f.address.city) AS seaLevel

FROM Families f

 [

 {

 "city": "seattle",

 "seaLevel": 520

 },

 {

 "city": "NY",

 "seaLevel": 410

 }

]

Operator evaluation

Parameterized SQL queries

Below is an example that exercises the UDF.

QueryQuery

ResultsResults

As the preceding examples showcase, UDFs integrate the power of JavaScript language with the DocumentDB

SQL to provide a rich programmable interface to do complex procedural, conditional logic with the help of

inbuilt JavaScript runtime capabilities.

DocumentDB SQL provides the arguments to the UDFs for each document in the source at the current stage

(WHERE clause or SELECT clause) of processing the UDF. The result is incorporated in the overall execution

pipeline seamlessly. If the properties referred to by the UDF parameters are not available in the JSON value,

the parameter is considered as undefined and hence the UDF invocation is entirely skipped. Similarly if the

result of the UDF is undefined, it's not included in the result.

In summary, UDFs are great tools to do complex business logic as part of the query.

DocumentDB, by the virtue of being a JSON database, draws parallels with JavaScript operators and its

evaluation semantics. While DocumentDB tries to preserve JavaScript semantics in terms of JSON support, the

operation evaluation deviates in some instances.

In DocumentDB SQL, unlike in traditional SQL, the types of values are often not known until the values are

actually retrieved from database. In order to efficiently execute queries, most of the operators have strict type

requirements.

DocumentDB SQL doesn't perform implicit conversions, unlike JavaScript. For instance, a query like

SELECT * FROM Person p WHERE p.Age = 21 matches documents which contain an Age property whose value is

21. Any other document whose Age property matches string "21", or other possibly infinite variations like

"021", "21.0", "0021", "00021", etc. will not be matched. This is in contrast to the JavaScript where the string

values are implicitly casted to numbers (based on operator, ex: ==). This choice is crucial for efficient index

matching in DocumentDB SQL.

DocumentDB supports queries with parameters expressed with the familiar @ notation. Parameterized SQL

provides robust handling and escaping of user input, preventing accidental exposure of data through SQL

injection.

For example, you can write a query that takes last name and address state as parameters, and then execute it

for various values of last name and address state based on user input.

SELECT *

FROM Families f

WHERE f.lastName = @lastName AND f.address.state = @addressState

{

 "query": "SELECT * FROM Families f WHERE f.lastName = @lastName AND f.address.state = @addressState",

 "parameters": [

 {"name": "@lastName", "value": "Wakefield"},

 {"name": "@addressState", "value": "NY"},

]

}

{

 "query": "SELECT TOP @n * FROM Families",

 "parameters": [

 {"name": "@n", "value": 10},

]

}

Built-in functions

FUNCTION GROUPFUNCTION GROUP OPERATIONSOPERATIONS

Mathematical functions ABS, CEILING, EXP, FLOOR, LOG, LOG10, POWER, ROUND,
SIGN, SQRT, SQUARE, TRUNC, ACOS, ASIN, ATAN, ATN2,
COS, COT, DEGREES, PI, RADIANS, SIN, and TAN

Type checking functions IS_ARRAY, IS_BOOL, IS_NULL, IS_NUMBER, IS_OBJECT,
IS_STRING, IS_DEFINED, and IS_PRIMITIVE

String functions CONCAT, CONTAINS, ENDSWITH, INDEX_OF, LEFT,
LENGTH, LOWER, LTRIM, REPLACE, REPLICATE, REVERSE,
RIGHT, RTRIM, STARTSWITH, SUBSTRING, and UPPER

Array functions ARRAY_CONCAT, ARRAY_CONTAINS, ARRAY_LENGTH, and
ARRAY_SLICE

Spatial functions ST_DISTANCE, ST_WITHIN, ST_INTERSECTS, ST_ISVALID, and
ST_ISVALIDDETAILED

Mathematical functions

This request can then be sent to DocumentDB as a parameterized JSON query like shown below.

The argument to TOP can be set using parameterized queries like shown below.

Parameter values can be any valid JSON (strings, numbers, Booleans, null, even arrays or nested JSON). Also

since DocumentDB is schema-less, parameters are not validated against any type.

DocumentDB also supports a number of built-in functions for common operations, that can be used inside

queries like user defined functions (UDFs).

If you’re currently using a user defined function (UDF) for which a built-in function is now available, you

should use the corresponding built-in function as it is going to be quicker to run and more efficiently.

The mathematical functions each perform a calculation, usually based on input values that are provided as

arguments, and return a numeric value. Here’s a table of supported built-in mathematical functions.

USAGEUSAGE DESCRIPTIONDESCRIPTION

[ABS (num_expr) Returns the absolute (positive) value of the specified
numeric expression.

CEILING (num_expr) Returns the smallest integer value greater than, or equal to,
the specified numeric expression.

FLOOR (num_expr) Returns the largest integer less than or equal to the
specified numeric expression.

EXP (num_expr) Returns the exponent of the specified numeric expression.

LOG (num_expr [,base]) Returns the natural logarithm of the specified numeric
expression, or the logarithm using the specified base

LOG10 (num_expr) Returns the base-10 logarithmic value of the specified
numeric expression.

ROUND (num_expr) Returns a numeric value, rounded to the closest integer
value.

TRUNC (num_expr) Returns a numeric value, truncated to the closest integer
value.

SQRT (num_expr) Returns the square root of the specified numeric expression.

SQUARE (num_expr) Returns the square of the specified numeric expression.

POWER (num_expr, num_expr) Returns the power of the specified numeric expression to
the value specifed.

SIGN (num_expr) Returns the sign value (-1, 0, 1) of the specified numeric
expression.

ACOS (num_expr) Returns the angle, in radians, whose cosine is the specified
numeric expression; also called arccosine.

ASIN (num_expr) Returns the angle, in radians, whose sine is the specified
numeric expression. This is also called arcsine.

ATAN (num_expr) Returns the angle, in radians, whose tangent is the specified
numeric expression. This is also called arctangent.

ATN2 (num_expr) Returns the angle, in radians, between the positive x-axis
and the ray from the origin to the point (y, x), where x and y
are the values of the two specified float expressions.

COS (num_expr) Returns the trigonometric cosine of the specified angle, in
radians, in the specified expression.

COT (num_expr) Returns the trigonometric cotangent of the specified angle,
in radians, in the specified numeric expression.

DEGREES (num_expr) Returns the corresponding angle in degrees for an angle
specified in radians.

PI () Returns the constant value of PI.

RADIANS (num_expr) Returns radians when a numeric expression, in degrees, is
entered.

SIN (num_expr) Returns the trigonometric sine of the specified angle, in
radians, in the specified expression.

TAN (num_expr) Returns the tangent of the input expression, in the specified
expression.

USAGEUSAGE DESCRIPTIONDESCRIPTION

SELECT VALUE ABS(-4)

[4]

Type checking functions

UsageUsage DescriptionDescription

IS_ARRAY (expr) Returns a Boolean indicating if the type of the value is an
array.

IS_BOOL (expr) Returns a Boolean indicating if the type of the value is a
Boolean.

IS_NULL (expr) Returns a Boolean indicating if the type of the value is null.

IS_NUMBER (expr) Returns a Boolean indicating if the type of the value is a
number.

IS_OBJECT (expr) Returns a Boolean indicating if the type of the value is a
JSON object.

IS_STRING (expr) Returns a Boolean indicating if the type of the value is a
string.

For example, you can now run queries like the following:

QueryQuery

ResultsResults

The main difference between DocumentDB’s functions compared to ANSI SQL is that they are designed to

work well with schema-less and mixed schema data. For example, if you have a document where the Size

property is missing, or has a non-numeric value like “unknown”, then the document is skipped over, instead of

returning an error.

The type checking functions allow you to check the type of an expression within SQL queries. Type checking

functions can be used to determine the type of properties within documents on the fly when it is variable or

unknown. Here’s a table of supported built-in type checking functions.

https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_is_array
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_is_bool
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_is_null
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_is_number
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_is_object
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_is_string

IS_DEFINED (expr) Returns a Boolean indicating if the property has been
assigned a value.

IS_PRIMITIVE (expr) Returns a Boolean indicating if the type of the value is a
string, number, Boolean or null.

SELECT VALUE IS_NUMBER(-4)

[true]

String functions

USAGEUSAGE DESCRIPTIONDESCRIPTION

LENGTH (str_expr) Returns the number of characters of the specified string
expression

CONCAT (str_expr, str_expr [, str_expr]) Returns a string that is the result of concatenating two or
more string values.

SUBSTRING (str_expr, num_expr, num_expr) Returns part of a string expression.

STARTSWITH (str_expr, str_expr) Returns a Boolean indicating whether the first string
expression ends with the second

ENDSWITH (str_expr, str_expr) Returns a Boolean indicating whether the first string
expression ends with the second

CONTAINS (str_expr, str_expr) Returns a Boolean indicating whether the first string
expression contains the second.

INDEX_OF (str_expr, str_expr) Returns the starting position of the first occurrence of the
second string expression within the first specified string
expression, or -1 if the string is not found.

LEFT (str_expr, num_expr) Returns the left part of a string with the specified number of
characters.

RIGHT (str_expr, num_expr) Returns the right part of a string with the specified number
of characters.

LTRIM (str_expr) Returns a string expression after it removes leading blanks.

RTRIM (str_expr) Returns a string expression after truncating all trailing
blanks.

Using these functions, you can now run queries like the following:

QueryQuery

ResultsResults

The following scalar functions perform an operation on a string input value and return a string, numeric or

Boolean value. Here's a table of built-in string functions:

https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_is_defined
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_is_primitive
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_length
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_concat
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_substring
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_startswith
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_endswith
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_contains
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_index_of
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_left
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_right
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_ltrim
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_rtrim

LOWER (str_expr) Returns a string expression after converting uppercase
character data to lowercase.

UPPER (str_expr) Returns a string expression after converting lowercase
character data to uppercase.

REPLACE (str_expr, str_expr, str_expr) Replaces all occurrences of a specified string value with
another string value.

REPLICATE (str_expr, num_expr) Repeats a string value a specified number of times.

REVERSE (str_expr) Returns the reverse order of a string value.

USAGEUSAGE DESCRIPTIONDESCRIPTION

SELECT VALUE UPPER(Families.id)

FROM Families

[

 "WAKEFIELDFAMILY",

 "ANDERSENFAMILY"

]

SELECT Families.id, CONCAT(Families.address.city, ",", Families.address.state) AS location

FROM Families

[{

 "id": "WakefieldFamily",

 "location": "NY,NY"

},

{

 "id": "AndersenFamily",

 "location": "seattle,WA"

}]

SELECT Families.id, Families.address.city

FROM Families

WHERE STARTSWITH(Families.id, "Wakefield")

Using these functions, you can now run queries like the following. For example, you can return the family

name in uppercase as follows:

QueryQuery

ResultsResults

Or concatenate strings like in this example:

QueryQuery

ResultsResults

String functions can also be used in the WHERE clause to filter results, like in the following example:

QueryQuery

ResultsResults

https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_lower
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_upper
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_replace
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_replicate
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_reverse

[{

 "id": "WakefieldFamily",

 "city": "NY"

}]

Array functions

USAGEUSAGE DESCRIPTIONDESCRIPTION

ARRAY_LENGTH (arr_expr) Returns the number of elements of the specified array
expression.

ARRAY_CONCAT (arr_expr, arr_expr [, arr_expr]) Returns an array that is the result of concatenating two or
more array values.

ARRAY_CONTAINS (arr_expr, expr) Returns a Boolean indicating whether the array contains the
specified value.

ARRAY_SLICE (arr_expr, num_expr [, num_expr]) Returns part of an array expression.

SELECT Families.id

FROM Families

WHERE ARRAY_CONTAINS(Families.parents, { givenName: "Robin", familyName: "Wakefield" })

[{

 "id": "WakefieldFamily"

}]

SELECT Families.id, ARRAY_LENGTH(Families.children) AS numberOfChildren

FROM Families

[{

 "id": "WakefieldFamily",

 "numberOfChildren": 2

},

{

 "id": "AndersenFamily",

 "numberOfChildren": 1

}]

Spatial functions

The following scalar functions perform an operation on an array input value and return numeric, Boolean or

array value. Here's a table of built-in array functions:

Array functions can be used to manipulate arrays within JSON. For example, here's a query that returns all

documents where one of the parents is "Robin Wakefield".

QueryQuery

ResultsResults

Here's another example that uses ARRAY_LENGTH to get the number of children per family.

QueryQuery

ResultsResults

https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_array_length
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_array_concat
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_array_contains
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_array_slice

UsageUsage DescriptionDescription

ST_DISTANCE (point_expr, point_expr) Returns the distance between the two GeoJSON Point,
Polygon, or LineString expressions.

ST_WITHIN (point_expr, polygon_expr) Returns a Boolean expression indicating whether the first
GeoJSON object (Point, Polygon, or LineString) is within the
second GeoJSON object (Point, Polygon, or LineString).

ST_INTERSECTS (spatial_expr, spatial_expr) Returns a Boolean expression indicating whether the two
specified GeoJSON objects (Point, Polygon, or LineString)
intersect.

ST_ISVALID Returns a Boolean value indicating whether the specified
GeoJSON Point, Polygon, or LineString expression is valid.

ST_ISVALIDDETAILED Returns a JSON value containing a Boolean value if the
specified GeoJSON Point, Polygon, or LineString expression
is valid, and if invalid, additionally the reason as a string
value.

SELECT f.id

FROM Families f

WHERE ST_DISTANCE(f.location, {'type': 'Point', 'coordinates':[31.9, -4.8]}) < 30000

[{

 "id": "WakefieldFamily"

}]

LINQ to DocumentDB SQL

DocumentDB supports the following Open Geospatial Consortium (OGC) built-in functions for geospatial

querying.

Spatial functions can be used to perform proximity queries against spatial data. For example, here's a query

that returns all family documents that are within 30 km of the specified location using the ST_DISTANCE built-

in function.

QueryQuery

ResultsResults

For more details on geospatial support in DocumentDB, please see Working with geospatial data in Azure

DocumentDB. That wraps up spatial functions, and the SQL syntax for DocumentDB. Now let's take a look at

how LINQ querying works and how it interacts with the syntax we've seen so far.

LINQ is a .NET programming model that expresses computation as queries on streams of objects.

DocumentDB provides a client side library to interface with LINQ by facilitating a conversion between JSON

and .NET objects and a mapping from a subset of LINQ queries to DocumentDB queries.

The picture below shows the architecture of supporting LINQ queries using DocumentDB. Using the

DocumentDB client, developers can create an IQueryableIQueryable object that directly queries the DocumentDB query

provider, which then translates the LINQ query into a DocumentDB query. The query is then passed to the

DocumentDB server to retrieve a set of results in JSON format. The returned results are deserialized into a

stream of .NET objects on the client side.

.NET and JSON mapping

The mapping between .NET objects and JSON documents is natural - each data member field is mapped to a

JSON object, where the field name is mapped to the "key" part of the object and the "value" part is recursively

mapped to the value part of the object. Consider the following example. The Family object created is mapped

to the JSON document as shown below. And vice versa, the JSON document is mapped back to a .NET object.

C# ClassC# Class

public class Family

{

 [JsonProperty(PropertyName="id")]

 public string Id;

 public Parent[] parents;

 public Child[] children;

 public bool isRegistered;

};

public struct Parent

{

 public string familyName;

 public string givenName;

};

public class Child

{

 public string familyName;

 public string givenName;

 public string gender;

 public int grade;

 public List<Pet> pets;

};

public class Pet

{

 public string givenName;

};

public class Address

{

 public string state;

 public string county;

 public string city;

};

// Create a Family object.

Parent mother = new Parent { familyName= "Wakefield", givenName="Robin" };

Parent father = new Parent { familyName = "Miller", givenName = "Ben" };

Child child = new Child { familyName="Merriam", givenName="Jesse", gender="female", grade=1 };

Pet pet = new Pet { givenName = "Fluffy" };

Address address = new Address { state = "NY", county = "Manhattan", city = "NY" };

Family family = new Family { Id = "WakefieldFamily", parents = new Parent [] { mother, father}, children =

new Child[] { child }, isRegistered = false };

JSONJSON

{

 "id": "WakefieldFamily",

 "parents": [

 { "familyName": "Wakefield", "givenName": "Robin" },

 { "familyName": "Miller", "givenName": "Ben" }

],

 "children": [

 {

 "familyName": "Merriam",

 "givenName": "Jesse",

 "gender": "female",

 "grade": 1,

 "pets": [

 { "givenName": "Goofy" },

 { "givenName": "Shadow" }

]

 },

 {

 "familyName": "Miller",

 "givenName": "Lisa",

 "gender": "female",

 "grade": 8

 }

],

 "address": { "state": "NY", "county": "Manhattan", "city": "NY" },

 "isRegistered": false

};

LINQ to SQL translation

List of supported LINQ operators

The DocumentDB query provider performs a best effort mapping from a LINQ query into a DocumentDB SQL

query. In the following description, we assume the reader has a basic familiarity of LINQ.

First, for the type system, we support all JSON primitive types – numeric types, boolean, string, and null. Only

these JSON types are supported. The following scalar expressions are supported.

Constant values – these includes constant values of the primitive data types at the time the query is

evaluated.

Property/array index expressions – these expressions refer to the property of an object or an array

element.

family.Id; family.children[0].familyName; family.children[0].grade; family.children[n].grade; //n is an int

variable

Arithmetic expressions - These include common arithmetic expressions on numerical and boolean

values. For the complete list, refer to the SQL specification.

2 * family.children[0].grade; x + y;

String comparison expression - these include comparing a string value to some constant string value.

mother.familyName == "Smith"; child.givenName == s; //s is a string variable

Object/array creation expression - these expressions return an object of compound value type or

anonymous type or an array of such objects. These values can be nested.

new Parent { familyName = "Smith", givenName = "Joe" }; new { first = 1, second = 2 }; //an anonymous

type with 2 fields

new int[] { 3, child.grade, 5 };

Here is a list of supported LINQ operators in the LINQ provider included with the DocumentDB .NET SDK.

SQL query operators

Select Operator

input.Select(family => family.parents[0].familyName);

SELECT VALUE f.parents[0].familyName

FROM Families f

input.Select(family => family.children[0].grade + c); // c is an int variable

SELECT VALUE f.children[0].grade + c

FROM Families f

SelectSelect: Projections translate to the SQL SELECT including object construction

WhereWhere: Filters translate to the SQL WHERE, and support translation between && , || and ! to the SQL

operators

SelectManySelectMany : Allows unwinding of arrays to the SQL JOIN clause. Can be used to chain/nest expressions to

filter on array elements

OrderBy and OrderByDescendingOrderBy and OrderByDescending: Translates to ORDER BY ascending/descending:

CompareToCompareTo: Translates to range comparisons. Commonly used for strings since they’re not comparable in

.NET

TakeTake: Translates to the SQL TOP for limiting results from a query

Math FunctionsMath Functions : Supports translation from .NET’s Abs, Acos, Asin, Atan, Ceiling, Cos, Exp, Floor, Log,

Log10, Pow, Round, Sign, Sin, Sqrt, Tan, Truncate to the equivalent SQL built-in functions.

S tr ing FunctionsS tr ing Functions : Supports translation from .NET’s Concat, Contains, EndsWith, IndexOf, Count, ToLower,

TrimStart, Replace, Reverse, TrimEnd, StartsWith, SubString, ToUpper to the equivalent SQL built-in

functions.

Array FunctionsArray Functions : Supports translation from .NET’s Concat, Contains, and Count to the equivalent SQL

built-in functions.

Geospatial Extension FunctionsGeospatial Extension Functions : Supports translation from stub methods Distance, Within, IsValid, and

IsValidDetailed to the equivalent SQL built-in functions.

User Defined Function Extension FunctionUser Defined Function Extension Function : Supports translation from the stub method

UserDefinedFunctionProvider.Invoke to the corresponding user defined function.

MiscellaneousMiscellaneous : Supports translation of the coalesce and conditional operators. Can translate Contains to

String CONTAINS, ARRAY_CONTAINS or the SQL IN depending on context.

Here are some examples that illustrate how some of the standard LINQ query operators are translated down

to DocumentDB queries.

The syntax is input.Select(x => f(x)) , where f is a scalar expression.

L INQ lambda expressionL INQ lambda expression

SQLSQL

L INQ lambda expressionL INQ lambda expression

SQLSQL

L INQ lambda expressionL INQ lambda expression

input.Select(family => new

{

 name = family.children[0].familyName,

 grade = family.children[0].grade + 3

});

SELECT VALUE {"name":f.children[0].familyName,

 "grade": f.children[0].grade + 3 }

FROM Families f

SelectMany operator

input.SelectMany(family => family.children);

SELECT VALUE child

FROM child IN Families.children

Where operator

input.Where(family=> family.parents[0].familyName == "Smith");

SELECT *

FROM Families f

WHERE f.parents[0].familyName = "Smith"

input.Where(

 family => family.parents[0].familyName == "Smith" &&

 family.children[0].grade < 3);

SELECT *

FROM Families f

WHERE f.parents[0].familyName = "Smith"

AND f.children[0].grade < 3

Composite SQL queries

Concatenation

SQLSQL

The syntax is input.SelectMany(x => f(x)) , where f is a scalar expression that returns a collection type.

L INQ lambda expressionL INQ lambda expression

SQLSQL

The syntax is input.Where(x => f(x)) , where f is a scalar expression which returns a Boolean value.

L INQ lambda expressionL INQ lambda expression

SQLSQL

L INQ lambda expressionL INQ lambda expression

SQLSQL

The above operators can be composed to form more powerful queries. Since DocumentDB supports nested

collections, the composition can either be concatenated or nested.

The syntax is input(.|.SelectMany())(.Select()|.Where())* . A concatenated query can start with an optional

input.Select(family=>family.parents[0])

 .Where(familyName == "Smith");

SELECT *

FROM Families f

WHERE f.parents[0].familyName = "Smith"

input.Where(family => family.children[0].grade > 3)

 .Select(family => family.parents[0].familyName);

SELECT VALUE f.parents[0].familyName

FROM Families f

WHERE f.children[0].grade > 3

input.Select(family => new { grade=family.children[0].grade}).

 Where(anon=> anon.grade < 3);

SELECT *

FROM Families f

WHERE ({grade: f.children[0].grade}.grade > 3)

input.SelectMany(family => family.parents)

 .Where(parent => parents.familyName == "Smith");

SELECT *

FROM p IN Families.parents

WHERE p.familyName = "Smith"

Nesting

input.SelectMany(family=>

 family.parents.Select(p => p.familyName));

SelectMany query followed by multiple Select or Where operators.

L INQ lambda expressionL INQ lambda expression

SQLSQL

L INQ lambda expressionL INQ lambda expression

SQLSQL

L INQ lambda expressionL INQ lambda expression

SQLSQL

L INQ lambda expressionL INQ lambda expression

SQLSQL

The syntax is input.SelectMany(x=>x.Q()) where Q is a Select , SelectMany , or Where operator.

In a nested query, the inner query is applied to each element of the outer collection. One important feature is

that the inner query can refer to the fields of the elements in the outer collection like self-joins.

L INQ lambda expressionL INQ lambda expression

SELECT VALUE p.familyName

FROM Families f

JOIN p IN f.parents

input.SelectMany(family =>

 family.children.Where(child => child.familyName == "Jeff"));

SELECT *

FROM Families f

JOIN c IN f.children

WHERE c.familyName = "Jeff"

input.SelectMany(family => family.children.Where(

 child => child.familyName == family.parents[0].familyName));

SELECT *

FROM Families f

JOIN c IN f.children

WHERE c.familyName = f.parents[0].familyName

Executing SQL queries

REST API

SQLSQL

L INQ lambda expressionL INQ lambda expression

SQLSQL

L INQ lambda expressionL INQ lambda expression

SQLSQL

DocumentDB exposes resources through a REST API that can be called by any language capable of making

HTTP/HTTPS requests. Additionally, DocumentDB offers programming libraries for several popular languages

like .NET, Node.js, JavaScript and Python. The REST API and the various libraries all support querying through

SQL. The .NET SDK supports LINQ querying in addition to SQL.

The following examples show how to create a query and submit it against a DocumentDB database account.

DocumentDB offers an open RESTful programming model over HTTP. Database accounts can be provisioned

using an Azure subscription. The DocumentDB resource model consists of a sets of resources under a database

account, each of which is addressable using a logical and stable URI. A set of resources is referred to as a feed

in this document. A database account consists of a set of databases, each containing multiple collections, each

of which in-turn contain documents, UDFs, and other resource types.

The basic interaction model with these resources is through the HTTP verbs GET, PUT, POST and DELETE with

their standard interpretation. The POST verb is used for creation of a new resource, for executing a stored

procedure or for issuing a DocumentDB query. Queries are always read only operations with no side-effects.

The following examples show a POST for a DocumentDB query made against a collection containing the two

sample documents we've reviewed so far. The query has a simple filter on the JSON name property. Note the

use of the x-ms-documentdb-isquery and Content-Type: application/query+json headers to denote that the

operation is a query.

RequestRequest

POST https://<REST URI>/docs HTTP/1.1

...

x-ms-documentdb-isquery: True

Content-Type: application/query+json

{

 "query": "SELECT * FROM Families f WHERE f.id = @familyId",

 "parameters": [

 {"name": "@familyId", "value": "AndersenFamily"}

]

}

HTTP/1.1 200 Ok

x-ms-activity-id: 8b4678fa-a947-47d3-8dd3-549a40da6eed

x-ms-item-count: 1

x-ms-request-charge: 0.32

<indented for readability, results highlighted>

{

 "_rid":"u1NXANcKogE=",

 "Documents":[

 {

 "id":"AndersenFamily",

 "lastName":"Andersen",

 "parents":[

 {

 "firstName":"Thomas"

 },

 {

 "firstName":"Mary Kay"

 }

],

 "children":[

 {

 "firstName":"Henriette Thaulow",

 "gender":"female",

 "grade":5,

 "pets":[

 {

 "givenName":"Fluffy"

 }

]

 }

],

 "address":{

 "state":"WA",

 "county":"King",

 "city":"seattle"

 },

 "_rid":"u1NXANcKogEcAAAAAAAAAA==",

 "_ts":1407691744,

 "_self":"dbs\/u1NXAA==\/colls\/u1NXANcKogE=\/docs\/u1NXANcKogEcAAAAAAAAAA==\/",

 "_etag":"00002b00-0000-0000-0000-53e7abe00000",

 "_attachments":"_attachments\/"

 }

],

 "count":1

}

ResultsResults

The second example shows a more complex query that returns multiple results from the join.

RequestRequest

POST https://<REST URI>/docs HTTP/1.1

...

x-ms-documentdb-isquery: True

Content-Type: application/query+json

{

 "query": "SELECT

 f.id AS familyName,

 c.givenName AS childGivenName,

 c.firstName AS childFirstName,

 p.givenName AS petName

 FROM Families f

 JOIN c IN f.children

 JOIN p in c.pets",

 "parameters": []

}

HTTP/1.1 200 Ok

x-ms-activity-id: 568f34e3-5695-44d3-9b7d-62f8b83e509d

x-ms-item-count: 1

x-ms-request-charge: 7.84

<indented for readability, results highlighted>

{

 "_rid":"u1NXANcKogE=",

 "Documents":[

 {

 "familyName":"AndersenFamily",

 "childFirstName":"Henriette Thaulow",

 "petName":"Fluffy"

 },

 {

 "familyName":"WakefieldFamily",

 "childGivenName":"Jesse",

 "petName":"Goofy"

 },

 {

 "familyName":"WakefieldFamily",

 "childGivenName":"Jesse",

 "petName":"Shadow"

 }

],

 "count":3

}

ResultsResults

If a query's results cannot fit within a single page of results, then the REST API returns a continuation token

through the x-ms-continuation-token response header. Clients can paginate results by including the header in

subsequent results. The number of results per page can also be controlled through the x-ms-max-item-count

number header.

To manage the data consistency policy for queries, use the x-ms-consistency-level header like all REST API

requests. For session consistency, it is required to also echo the latest x-ms-session-token Cookie header in

the query request. Note that the queried collection's indexing policy can also influence the consistency of

query results. With the default indexing policy settings, for collections the index is always current with the

document contents and query results will match the consistency chosen for data. If the indexing policy is

relaxed to Lazy, then queries can return stale results. For more information, refer to DocumentDB Consistency

Levels.

If the configured indexing policy on the collection cannot support the specified query, the DocumentDB server

C# (.NET) SDK

foreach (var family in client.CreateDocumentQuery(collectionLink,

 "SELECT * FROM Families f WHERE f.id = \"AndersenFamily\""))

{

 Console.WriteLine("\tRead {0} from SQL", family);

}

SqlQuerySpec query = new SqlQuerySpec("SELECT * FROM Families f WHERE f.id = @familyId");

query.Parameters = new SqlParameterCollection();

query.Parameters.Add(new SqlParameter("@familyId", "AndersenFamily"));

foreach (var family in client.CreateDocumentQuery(collectionLink, query))

{

 Console.WriteLine("\tRead {0} from parameterized SQL", family);

}

foreach (var family in (

 from f in client.CreateDocumentQuery(collectionLink)

 where f.Id == "AndersenFamily"

 select f))

{

 Console.WriteLine("\tRead {0} from LINQ query", family);

}

foreach (var family in client.CreateDocumentQuery(collectionLink)

 .Where(f => f.Id == "AndersenFamily")

 .Select(f => f))

{

 Console.WriteLine("\tRead {0} from LINQ lambda", family);

}

foreach (var family in client.CreateDocumentQuery(collectionLink,

 @"SELECT {""Name"": f.id, ""City"":f.address.city} AS Family

 FROM Families f

 WHERE f.address.city = f.address.state"))

{

 Console.WriteLine("\tRead {0} from SQL", family);

}

foreach (var family in (

 from f in client.CreateDocumentQuery<Family>(collectionLink)

 where f.address.city == f.address.state

 select new { Name = f.Id, City = f.address.city }))

{

 Console.WriteLine("\tRead {0} from LINQ query", family);

}

foreach (var family in

 client.CreateDocumentQuery<Family>(collectionLink)

 .Where(f => f.address.city == f.address.state)

 .Select(f => new { Name = f.Id, City = f.address.city }))

{

 Console.WriteLine("\tRead {0} from LINQ lambda", family);

}

returns 400 "Bad Request". This is returned for range queries against paths configured for hash (equality)

lookups, and for paths explicitly excluded from indexing. The x-ms-documentdb-query-enable-scan header can be

specified to allow the query to perform a scan when an index is not available.

The .NET SDK supports both LINQ and SQL querying. The following example shows how to perform the simple

filter query introduced earlier in this document.

This sample compares two properties for equality within each document and uses anonymous projections.

foreach (var pet in client.CreateDocumentQuery(collectionLink,

 @"SELECT p

 FROM Families f

 JOIN c IN f.children

 JOIN p in c.pets

 WHERE p.givenName = ""Shadow"""))

{

 Console.WriteLine("\tRead {0} from SQL", pet);

}

// Equivalent in Lambda expressions

foreach (var pet in

 client.CreateDocumentQuery<Family>(collectionLink)

 .SelectMany(f => f.children)

 .SelectMany(c => c.pets)

 .Where(p => p.givenName == "Shadow"))

{

 Console.WriteLine("\tRead {0} from LINQ lambda", pet);

}

JavaScript server-side API

The next sample shows joins, expressed through LINQ SelectMany.

The .NET client automatically iterates through all the pages of query results in the foreach blocks as shown

above. The query options introduced in the REST API section are also available in the .NET SDK using the

FeedOptions and FeedResponse classes in the CreateDocumentQuery method. The number of pages can be

controlled using the MaxItemCount setting.

You can also explicitly control paging by creating IDocumentQueryable using the IQueryable object, then by

reading the ResponseContinuationToken values and passing them back as RequestContinuationToken in

FeedOptions . EnableScanInQuery can be set to enable scans when the query cannot be supported by the

configured indexing policy. For partitioned collections, you can use PartitionKey to run the query against a

single partition (though DocumentDB can automatically extract this from the query text), and

EnableCrossPartitionQuery to run queries that may need to be run against multiple partitions.

Refer to DocumentDB .NET samples for more samples containing queries.

DocumentDB provides a programming model for executing JavaScript based application logic directly on the

collections using stored procedures and triggers. The JavaScript logic registered at a collection level can then

issue database operations on the operations on the documents of the given collection. These operations are

wrapped in ambient ACID transactions.

The following example show how to use the queryDocuments in the JavaScript server API to make queries

from inside stored procedures and triggers.

https://github.com/Azure/azure-documentdb-net

function businessLogic(name, author) {

 var context = getContext();

 var collectionManager = context.getCollection();

 var collectionLink = collectionManager.getSelfLink()

 // create a new document.

 collectionManager.createDocument(collectionLink,

 { name: name, author: author },

 function (err, documentCreated) {

 if (err) throw new Error(err.message);

 // filter documents by author

 var filterQuery = "SELECT * from root r WHERE r.author = 'George R.'";

 collectionManager.queryDocuments(collectionLink,

 filterQuery,

 function (err, matchingDocuments) {

 if (err) throw new Error(err.message);

context.getResponse().setBody(matchingDocuments.length);

 // Replace the author name for all documents that satisfied the query.

 for (var i = 0; i < matchingDocuments.length; i++) {

 matchingDocuments[i].author = "George R. R. Martin";

 // we don't need to execute a callback because they are in parallel

 collectionManager.replaceDocument(matchingDocuments[i]._self,

 matchingDocuments[i]);

 }

 })

 });

}

Aggregate functions

References

Native support for aggregate functions is in the works, but if you need count or sum functionality in the

meantime, you can achieve the same result using different methods.

On read path:

You can perform aggregate functions by retrieving the data and doing a count locally. It’s advised to use a

cheap query projection like SELECT VALUE 1 rather than full document such as SELECT * FROM c . This helps

maximize the number of documents processed in each page of results, thereby avoiding additional round-

trips to the service if needed.

You can also use a stored procedure to minimize network latency on repeated round trips. For a sample

stored procedure that calculates the count for a given filter query, see Count.js. The stored procedure can

enable users to combine rich business logic along with doing aggregations in an efficient way.

On write path:

Another common pattern is to pre-aggregate the results in the “write” path. This is especially attractive

when the volume of “read” requests is higher than that of “write” requests. Once pre-aggregated, the

results are available with a single point read request. The best way to pre-aggregate in DocumentDB is to

set up a trigger that is invoked with each “write” and update a metadata document that has the latest

results for the query that is being materialized. For instance, please look at the UpdateaMetadata.js sample,

which updates the minSize, maxSize, and totalSize of the metadata document for the collection. The sample

can be extended to update a counter, sum, etc.

1. Introduction to Azure DocumentDB

2. DocumentDB SQL specification

https://github.com/Azure/azure-documentdb-js-server/blob/master/samples/stored-procedures/Count.js
https://github.com/Azure/azure-documentdb-js-server/blob/master/samples/triggers/UpdateMetadata.js
http://go.microsoft.com/fwlink/p/?LinkID=510612

3. DocumentDB .NET samples

4. DocumentDB Consistency Levels

5. ANSI SQL 2011 http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53681

6. JSON http://json.org/

7. Javascript Specification http://www.ecma-international.org/publications/standards/Ecma-262.htm

8. LINQ http://msdn.microsoft.com/library/bb308959.aspx

9. Query evaluation techniques for large databases http://dl.acm.org/citation.cfm?id=152611

10. Query Processing in Parallel Relational Database Systems, IEEE Computer Society Press, 1994

11. Lu, Ooi, Tan, Query Processing in Parallel Relational Database Systems, IEEE Computer Society Press, 1994.

12. Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, Andrew Tomkins: Pig Latin: A Not-So-

Foreign Language for Data Processing, SIGMOD 2008.

13. G. Graefe. The Cascades framework for query optimization. IEEE Data Eng. Bull., 18(3): 1995.

https://github.com/Azure/azure-documentdb-net
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53681
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53681
http://json.org/
http://json.org/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://msdn.microsoft.com/library/bb308959.aspx
http://msdn.microsoft.com/library/bb308959.aspx
http://dl.acm.org/citation.cfm?id=152611
http://dl.acm.org/citation.cfm?id=152611

Andrew Liu • Andy Pasic • mimig • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • arramac • v-aljenk

DocumentDB server-side programming: Stored
procedures, database triggers, and UDFs
11/22/2016 • 25 min to read • Edit on GitHub

Contributors

Introduction to Stored Procedure and UDF Programming

Learn how Azure DocumentDB’s language integrated, transactional execution of JavaScript lets developers write

stored proceduresstored procedures , tr iggerstr iggers and user defined functions (UDFs)user defined functions (UDFs) natively in JavaScript. This allows you to

write database program application logic that can be shipped and executed directly on the database storage

partitions

We recommend getting started by watching the following video, where Andrew Liu provides a brief introduction

to DocumentDB's server-side database programming model.

Then, return to this article, where you'll learn the answers to the following questions:

How do I write a a stored procedure, trigger, or UDF using JavaScript?

How does DocumentDB guarantee ACID?

How do transactions work in DocumentDB?

What are pre-triggers and post-triggers and how do I write one?

How do I register and execute a stored procedure, trigger, or UDF in a RESTful manner by using HTTP?

What DocumentDB SDKs are available to create and execute stored procedures, triggers, and UDFs?

This approach of “JavaScript as a modern day T-SQL” frees application developers from the complexities of type

system mismatches and object-relational mapping technologies. It also has a number of intrinsic advantages that

can be utilized to build rich applications:

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-programming.md
https://github.com/aliuy
https://github.com/v-anpasi
https://github.com/mimig1
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/arramac
https://github.com/v-aljenk

Stored procedures

Example: Write a simple stored procedure

var helloWorldStoredProc = {

 id: "helloWorld",

 body: function () {

 var context = getContext();

 var response = context.getResponse();

 response.setBody("Hello, World");

 }

}

Procedural Logic:Procedural Logic: JavaScript as a high level programming language, provides a rich and familiar interface to

express business logic. You can perform complex sequences of operations closer to the data.

Atomic Transactions:Atomic Transactions: DocumentDB guarantees that database operations performed inside a single stored

procedure or trigger are atomic. This lets an application combine related operations in a single batch so that

either all of them succeed or none of them succeed.

Encapsulation:Encapsulation: Stored procedures can be used to group business logic in one place. This has two advantages:

Per formance:Per formance: The fact that JSON is intrinsically mapped to the Javascript language type system and is

also the basic unit of storage in DocumentDB allows for a number of optimizations like lazy materialization

of JSON documents in the buffer pool and making them available on-demand to the executing code. There

are more performance benefits associated with shipping business logic to the database:

Batching – Developers can group operations like inserts and submit them in bulk. The network traffic

latency cost and the store overhead to create separate transactions are reduced significantly.

Pre-compilation – DocumentDB precompiles stored procedures, triggers and user defined functions

(UDFs) to avoid JavaScript compilation cost for each invocation. The overhead of building the byte code

for the procedural logic is amortized to a minimal value.

Sequencing – Many operations need a side-effect (“trigger”) that potentially involves doing one or

many secondary store operations. Aside from atomicity, this is more performant when moved to the

server.

It adds an abstraction layer on top of the raw data, which enables data architects to evolve their

applications independently from the data. This is particularly advantageous when the data is schema-

less, due to the brittle assumptions that may need to be baked into the application if they have to deal

with data directly.

This abstraction lets enterprises keep their data secure by streamlining the access from the scripts.

The creation and execution of database triggers, stored procedure and custom query operators is supported

through the REST API, DocumentDB Studio, and client SDKs in many platforms including .NET, Node.js and

JavaScript.

This tutorial uses the Node.js SDK with Q Promises to illustrate syntax and usage of stored procedures, triggers,

and UDFs.

Let’s start with a simple stored procedure that returns a “Hello World” response.

Stored procedures are registered per collection, and can operate on any document and attachment present in that

collection. The following snippet shows how to register the helloWorld stored procedure with a collection.

https://msdn.microsoft.com/library/azure/dn781481.aspx
https://github.com/mingaliu/DocumentDBStudio/releases
http://azure.github.io/azure-documentdb-node-q/

// register the stored procedure

var createdStoredProcedure;

client.createStoredProcedureAsync('dbs/testdb/colls/testColl', helloWorldStoredProc)

 .then(function (response) {

 createdStoredProcedure = response.resource;

 console.log("Successfully created stored procedure");

 }, function (error) {

 console.log("Error", error);

 });

// execute the stored procedure

client.executeStoredProcedureAsync('dbs/testdb/colls/testColl/sprocs/helloWorld')

 .then(function (response) {

 console.log(response.result); // "Hello, World"

 }, function (err) {

 console.log("Error", error);

 });

Example: Write a stored procedure to create a document

var createDocumentStoredProc = {

 id: "createMyDocument",

 body: function createMyDocument(documentToCreate) {

 var context = getContext();

 var collection = context.getCollection();

 var accepted = collection.createDocument(collection.getSelfLink(),

 documentToCreate,

 function (err, documentCreated) {

 if (err) throw new Error('Error' + err.message);

 context.getResponse().setBody(documentCreated.id)

 });

 if (!accepted) return;

 }

}

Once the stored procedure is registered, we can execute it against the collection, and read the results back at the

client.

The context object provides access to all operations that can be performed on DocumentDB storage, as well as

access to the request and response objects. In this case, we used the response object to set the body of the

response that was sent back to the client. For more details, refer to the DocumentDB JavaScript server SDK

documentation.

Let us expand on this example and add more database related functionality to the stored procedure. Stored

procedures can create, update, read, query and delete documents and attachments inside the collection.

The next snippet shows how to use the context object to interact with DocumentDB resources.

This stored procedure takes as input documentToCreate, the body of a document to be created in the current

collection. All such operations are asynchronous and depend on JavaScript function callbacks. The callback

function has two parameters, one for the error object in case the operation fails, and one for the created object.

Inside the callback, users can either handle the exception or throw an error. In case a callback is not provided and

there is an error, the DocumentDB runtime throws an error.

In the example above, the callback throws an error if the operation failed. Otherwise, it sets the id of the created

document as the body of the response to the client. Here is how this stored procedure is executed with input

parameters.

http://azure.github.io/azure-documentdb-js-server/

// register the stored procedure

client.createStoredProcedureAsync('dbs/testdb/colls/testColl', createDocumentStoredProc)

 .then(function (response) {

 var createdStoredProcedure = response.resource;

 // run stored procedure to create a document

 var docToCreate = {

 id: "DocFromSproc",

 book: "The Hitchhiker’s Guide to the Galaxy",

 author: "Douglas Adams"

 };

 return client.executeStoredProcedureAsync('dbs/testdb/colls/testColl/sprocs/createMyDocument',

 docToCreate);

 }, function (error) {

 console.log("Error", error);

 })

.then(function (response) {

 console.log(response); // "DocFromSproc"

}, function (error) {

 console.log("Error", error);

});

Database program transactions

Note that this stored procedure can be modified to take an array of document bodies as input and create them all

in the same stored procedure execution instead of multiple network requests to create each of them individually.

This can be used to implement an efficient bulk importer for DocumentDB (discussed later in this tutorial).

The example described demonstrated how to use stored procedures. We will cover triggers and user defined

functions (UDFs) later in the tutorial.

Transaction in a typical database can be defined as a sequence of operations performed as a single logical unit of

work. Each transaction provides ACID guaranteesACID guarantees . ACID is a well-known acronym that stands for four properties

- Atomicity, Consistency, Isolation and Durability.

Briefly, atomicity guarantees that all the work done inside a transaction is treated as a single unit where either all

of it is committed or none. Consistency makes sure that the data is always in a good internal state across

transactions. Isolation guarantees that no two transactions interfere with each other – generally, most commercial

systems provide multiple isolation levels that can be used based on the application needs. Durability ensures that

any change that’s committed in the database will always be present.

In DocumentDB, JavaScript is hosted in the same memory space as the database. Hence, requests made within

stored procedures and triggers execute in the same scope of a database session. This enables DocumentDB to

guarantee ACID for all operations that are part of a single stored procedure/trigger. Consider the following stored

procedure definition:

// JavaScript source code

var exchangeItemsSproc = {

 name: "exchangeItems",

 body: function (playerId1, playerId2) {

 var context = getContext();

 var collection = context.getCollection();

 var response = context.getResponse();

 var player1Document, player2Document;

 // query for players

 var filterQuery = 'SELECT * FROM Players p where p.id = "' + playerId1 + '"';

 var accept = collection.queryDocuments(collection.getSelfLink(), filterQuery, {},

 function (err, documents, responseOptions) {

 if (err) throw new Error("Error" + err.message);

 if (documents.length != 1) throw "Unable to find both names";

 player1Document = documents[0];

 var filterQuery2 = 'SELECT * FROM Players p where p.id = "' + playerId2 + '"';

 var accept2 = collection.queryDocuments(collection.getSelfLink(), filterQuery2, {},

 function (err2, documents2, responseOptions2) {

 if (err2) throw new Error("Error" + err2.message);

 if (documents2.length != 1) throw "Unable to find both names";

 player2Document = documents2[0];

 swapItems(player1Document, player2Document);

 return;

 });

 if (!accept2) throw "Unable to read player details, abort ";

 });

 if (!accept) throw "Unable to read player details, abort ";

 // swap the two players’ items

 function swapItems(player1, player2) {

 var player1ItemSave = player1.item;

 player1.item = player2.item;

 player2.item = player1ItemSave;

 var accept = collection.replaceDocument(player1._self, player1,

 function (err, docReplaced) {

 if (err) throw "Unable to update player 1, abort ";

 var accept2 = collection.replaceDocument(player2._self, player2,

 function (err2, docReplaced2) {

 if (err) throw "Unable to update player 2, abort"

 });

 if (!accept2) throw "Unable to update player 2, abort";

 });

 if (!accept) throw "Unable to update player 1, abort";

 }

 }

}

// register the stored procedure in Node.js client

client.createStoredProcedureAsync(collection._self, exchangeItemsSproc)

 .then(function (response) {

 var createdStoredProcedure = response.resource;

 }

);

This stored procedure uses transactions within a gaming app to trade items between two players in a single

operation. The stored procedure attempts to read two documents each corresponding to the player IDs passed in

as an argument. If both player documents are found, then the stored procedure updates the documents by

Commit and rollback

Data consistency

Bounded execution

Example: Bulk importing data into a database program

swapping their items. If any errors are encountered along the way, it throws a JavaScript exception that implicitly

aborts the transaction.

If the collection the stored procedure is registered against is a single-partition collection, then the transaction is

scoped to all the docuemnts within the collection. If the collection is partitioned, then stored procedures are

executed in the transaction scope of a single partition key. Each stored procedure execution must then include a

partition key value corresponding to the scope the transaction must run under. For more details, see DocumentDB

Partitioning.

Transactions are deeply and natively integrated into DocumentDB’s JavaScript programming model. Inside a

JavaScript function, all operations are automatically wrapped under a single transaction. If the JavaScript

completes without any exception, the operations to the database are committed. In effect, the “BEGIN

TRANSACTION” and “COMMIT TRANSACTION” statements in relational databases are implicit in DocumentDB.

If there is any exception that’s propagated from the script, DocumentDB’s JavaScript runtime will roll back the

whole transaction. As shown in the earlier example, throwing an exception is effectively equivalent to a

“ROLLBACK TRANSACTION” in DocumentDB.

Stored procedures and triggers are always executed on the primary replica of the DocumentDB collection. This

ensures that reads from inside stored procedures offer strong consistency. Queries using user defined functions

can be executed on the primary or any secondary replica, but we ensure to meet the requested consistency level

by choosing the appropriate replica.

All DocumentDB operations must complete within the server specified request timeout duration. This constraint

also applies to JavaScript functions (stored procedures, triggers and user-defined functions). If an operation does

not complete with that time limit, the transaction is rolled back. JavaScript functions must finish within the time

limit or implement a continuation based model to batch/resume execution.

In order to simplify development of stored procedures and triggers to handle time limits, all functions under the

collection object (for create, read, replace, and delete of documents and attachments) return a Boolean value that

represents whether that operation will complete. If this value is false, it is an indication that the time limit is about

to expire and that the procedure must wrap up execution. Operations queued prior to the first unaccepted store

operation are guaranteed to complete if the stored procedure completes in time and does not queue any more

requests.

JavaScript functions are also bounded on resource consumption. DocumentDB reserves throughput per collection

based on the provisioned size of a database account. Throughput is expressed in terms of a normalized unit of

CPU, memory and IO consumption called request units or RUs. JavaScript functions can potentially use up a large

number of RUs within a short time, and might get rate-limited if the collection’s limit is reached. Resource

intensive stored procedures might also be quarantined to ensure availability of primitive database operations.

Below is an example of a stored procedure that is written to bulk-import documents into a collection. Note how

the stored procedure handles bounded execution by checking the Boolean return value from createDocument,

and then uses the count of documents inserted in each invocation of the stored procedure to track and resume

progress across batches.

function bulkImport(docs) {

 var collection = getContext().getCollection();

 var collectionLink = collection.getSelfLink();

 // The count of imported docs, also used as current doc index.

 var count = 0;

 // Validate input.

 if (!docs) throw new Error("The array is undefined or null.");

 var docsLength = docs.length;

 if (docsLength == 0) {

 getContext().getResponse().setBody(0);

 }

 // Call the create API to create a document.

 tryCreate(docs[count], callback);

 // Note that there are 2 exit conditions:

 // 1) The createDocument request was not accepted.

 // In this case the callback will not be called, we just call setBody and we are done.

 // 2) The callback was called docs.length times.

 // In this case all documents were created and we don’t need to call tryCreate anymore. Just call

setBody and we are done.

 function tryCreate(doc, callback) {

 var isAccepted = collection.createDocument(collectionLink, doc, callback);

 // If the request was accepted, callback will be called.

 // Otherwise report current count back to the client,

 // which will call the script again with remaining set of docs.

 if (!isAccepted) getContext().getResponse().setBody(count);

 }

 // This is called when collection.createDocument is done in order to process the result.

 function callback(err, doc, options) {

 if (err) throw err;

 // One more document has been inserted, increment the count.

 count++;

 if (count >= docsLength) {

 // If we created all documents, we are done. Just set the response.

 getContext().getResponse().setBody(count);

 } else {

 // Create next document.

 tryCreate(docs[count], callback);

 }

 }

}

Database triggers

Database pre-triggers

DocumentDB provides triggers that are executed or triggered by an operation on a document. For example, you

can specify a pre-trigger when you are creating a document – this pre-trigger will run before the document is

created. The following is an example of how pre-triggers can be used to validate the properties of a document

that is being created:

var validateDocumentContentsTrigger = {

 name: "validateDocumentContents",

 body: function validate() {

 var context = getContext();

 var request = context.getRequest();

 // document to be created in the current operation

 var documentToCreate = request.getBody();

 // validate properties

 if (!("timestamp" in documentToCreate)) {

 var ts = new Date();

 documentToCreate["my timestamp"] = ts.getTime();

 }

 // update the document that will be created

 request.setBody(documentToCreate);

 },

 triggerType: TriggerType.Pre,

 triggerOperation: TriggerOperation.Create

}

// register pre-trigger

client.createTriggerAsync(collection.self, validateDocumentContentsTrigger)

 .then(function (response) {

 console.log("Created", response.resource);

 var docToCreate = {

 id: "DocWithTrigger",

 event: "Error",

 source: "Network outage"

 };

 // run trigger while creating above document

 var options = { preTriggerInclude: "validateDocumentContents" };

 return client.createDocumentAsync(collection.self,

 docToCreate, options);

 }, function (error) {

 console.log("Error", error);

 })

.then(function (response) {

 console.log(response.resource); // document with timestamp property added

}, function (error) {

 console.log("Error", error);

});

And the corresponding Node.js client-side registration code for the trigger:

Pre-triggers cannot have any input parameters. The request object can be used to manipulate the request

message associated with the operation. Here, the pre-trigger is being run with the creation of a document, and the

request message body contains the document to be created in JSON format.

When triggers are registered, users can specify the operations that it can run with. This trigger was created with

TriggerOperation.Create, which means the following is not permitted.

var options = { preTriggerInclude: "validateDocumentContents" };

client.replaceDocumentAsync(docToReplace.self,

 newDocBody, options)

.then(function (response) {

 console.log(response.resource);

}, function (error) {

 console.log("Error", error);

});

// Fails, can’t use a create trigger in a replace operation

Database post-triggers

var updateMetadataTrigger = {

 name: "updateMetadata",

 body: function updateMetadata() {

 var context = getContext();

 var collection = context.getCollection();

 var response = context.getResponse();

 // document that was created

 var createdDocument = response.getBody();

 // query for metadata document

 var filterQuery = 'SELECT * FROM root r WHERE r.id = "_metadata"';

 var accept = collection.queryDocuments(collection.getSelfLink(), filterQuery,

 updateMetadataCallback);

 if(!accept) throw "Unable to update metadata, abort";

 function updateMetadataCallback(err, documents, responseOptions) {

 if(err) throw new Error("Error" + err.message);

 if(documents.length != 1) throw 'Unable to find metadata document';

 var metadataDocument = documents[0];

 // update metadata

 metadataDocument.createdDocuments += 1;

 metadataDocument.createdNames += " " + createdDocument.id;

 var accept = collection.replaceDocument(metadataDocument._self,

 metadataDocument, function(err, docReplaced) {

 if(err) throw "Unable to update metadata, abort";

 });

 if(!accept) throw "Unable to update metadata, abort";

 return;

 }

 },

 triggerType: TriggerType.Post,

 triggerOperation: TriggerOperation.All

}

Post-triggers, like pre-triggers, are associated with an operation on a document and don’t take any input

parameters. They run afterafter the operation has completed, and have access to the response message that is sent to

the client.

The following example shows post-triggers in action:

The trigger can be registered as shown in the following sample.

// register post-trigger

client.createTriggerAsync('dbs/testdb/colls/testColl', updateMetadataTrigger)

 .then(function(createdTrigger) {

 var docToCreate = {

 name: "artist_profile_1023",

 artist: "The Band",

 albums: ["Hellujah", "Rotators", "Spinning Top"]

 };

 // run trigger while creating above document

 var options = { postTriggerInclude: "updateMetadata" };

 return client.createDocumentAsync(collection.self,

 docToCreate, options);

 }, function(error) {

 console.log("Error" , error);

 })

.then(function(response) {

 console.log(response.resource);

}, function(error) {

 console.log("Error" , error);

});

User-defined functions

var taxUdf = {

 name: "tax",

 body: function tax(income) {

 if(income == undefined)

 throw 'no input';

 if (income < 1000)

 return income * 0.1;

 else if (income < 10000)

 return income * 0.2;

 else

 return income * 0.4;

 }

}

This trigger queries for the metadata document and updates it with details about the newly created document.

One thing that is important to note is the transactionaltransactional execution of triggers in DocumentDB. This post-trigger

runs as part of the same transaction as the creation of the original document. Therefore, if we throw an exception

from the post-trigger (say if we are unable to update the metadata document), the whole transaction will fail and

be rolled back. No document will be created, and an exception will be returned.

User-defined functions (UDFs) are used to extend the DocumentDB SQL query language grammar and implement

custom business logic. They can only be called from inside queries. They do not have access to the context object

and are meant to be used as compute-only JavaScript. Therefore, UDFs can be run on secondary replicas of the

DocumentDB service.

The following sample creates a UDF to calculate income tax based on rates for various income brackets, and then

uses it inside a query to find all people who paid more than $20,000 in taxes.

The UDF can subsequently be used in queries like in the following sample:

// register UDF

client.createUserDefinedFunctionAsync('dbs/testdb/colls/testColl', taxUdf)

 .then(function(response) {

 console.log("Created", response.resource);

 var query = 'SELECT * FROM TaxPayers t WHERE udf.tax(t.income) > 20000';

 return client.queryDocuments('dbs/testdb/colls/testColl',

 query).toArrayAsync();

 }, function(error) {

 console.log("Error" , error);

 })

.then(function(response) {

 var documents = response.feed;

 console.log(response.resource);

}, function(error) {

 console.log("Error" , error);

});

JavaScript language-integrated query API

NOTE

In addition to issuing queries using DocumentDB’s SQL grammar, the server-side SDK allows you to perform

optimized queries using a fluent JavaScript interface without any knowledge of SQL. The JavaScript query API

allows you to programmatically build queries by passing predicate functions into chainable function calls, with a

syntax familiar to ECMAScript5's Array built-ins and popular JavaScript libraries like lodash. Queries are parsed

by the JavaScript runtime to be executed efficiently using DocumentDB’s indices.

__ (double-underscore) is an alias to getContext().getCollection() .

In other words, you can use __ or getContext().getCollection() to access the JavaScript query API.

Supported functions include:

chain() value([callback] [, options])chain() value([callback] [, options])

fi lter (predicateFunction [, options] [, callback])fi lter (predicateFunction [, options] [, callback])

map(transformationFunction [, options] [, callback])map(transformationFunction [, options] [, callback])

pluck([propertyName] [, options] [, callback])pluck([propertyName] [, options] [, callback])

flatten([isShallow] [, options] [, callback])flatten([isShallow] [, options] [, callback])

sortBy([predicate] [, options] [, callback])sortBy([predicate] [, options] [, callback])

sortByDescending([predicate] [, options] [, callback])sortByDescending([predicate] [, options] [, callback])

Starts a chained call which must be terminated with value().

Filters the input using a predicate function which returns true/false in order to filter in/out input

documents into the resulting set. This behaves similar to a WHERE clause in SQL.

Applies a projection given a transformation function which maps each input item to a JavaScript object

or value. This behaves similar to a SELECT clause in SQL.

This is a shortcut for a map which extracts the value of a single property from each input item.

Combines and flattens arrays from each input item in to a single array. This behaves similar to

SelectMany in LINQ.

Produce a new set of documents by sorting the documents in the input document stream in ascending

order using the given predicate. This behaves similar to a ORDER BY clause in SQL.

Produce a new set of documents by sorting the documents in the input document stream in descending

order using the given predicate. This behaves similar to a ORDER BY x DESC clause in SQL.

When included inside predicate and/or selector functions, the following JavaScript constructs get automatically

Example: Write a stored procedure using the JavaScript query API

optimized to run directly on DocumentDB indices:

Simple operators: = + - * / % | ^ & == != === !=== < > <= >= || && << >> >>>! ~

Literals, including the object literal: {}

var, return

The following JavaScript constructs do not get optimized for DocumentDB indices:

Control flow (e.g. if, for, while)

Function calls

For more information, please see our Server-Side JSDocs.

The following code sample is an example of how the JavaScript Query API can be used in the context of a stored

procedure. The stored procedure inserts a document, given by an input parameter, and updates a metadata

document, using the __.filter() method, with minSize, maxSize, and totalSize based upon the input document's

size property.

http://azure.github.io/azure-documentdb-js-server/

/**

 * Insert actual doc and update metadata doc: minSize, maxSize, totalSize based on doc.size.

 */

function insertDocumentAndUpdateMetadata(doc) {

 // HTTP error codes sent to our callback funciton by DocDB server.

 var ErrorCode = {

 RETRY_WITH: 449,

 }

 var isAccepted = __.createDocument(__.getSelfLink(), doc, {}, function(err, doc, options) {

 if (err) throw err;

 // Check the doc (ignore docs with invalid/zero size and metaDoc itself) and call updateMetadata.

 if (!doc.isMetadata && doc.size > 0) {

 // Get the meta document. We keep it in the same collection. it's the only doc that has .isMetadata =

true.

 var result = __.filter(function(x) {

 return x.isMetadata === true

 }, function(err, feed, options) {

 if (err) throw err;

 // We assume that metadata doc was pre-created and must exist when this script is called.

 if (!feed || !feed.length) throw new Error("Failed to find the metadata document.");

 // The metadata document.

 var metaDoc = feed[0];

 // Update metaDoc.minSize:

 // for 1st document use doc.Size, for all the rest see if it's less than last min.

 if (metaDoc.minSize == 0) metaDoc.minSize = doc.size;

 else metaDoc.minSize = Math.min(metaDoc.minSize, doc.size);

 // Update metaDoc.maxSize.

 metaDoc.maxSize = Math.max(metaDoc.maxSize, doc.size);

 // Update metaDoc.totalSize.

 metaDoc.totalSize += doc.size;

 // Update/replace the metadata document in the store.

 var isAccepted = __.replaceDocument(metaDoc._self, metaDoc, function(err) {

 if (err) throw err;

 // Note: in case concurrent updates causes conflict with ErrorCode.RETRY_WITH, we can't read the meta

again

 // and update again because due to Snapshot isolation we will read same exact version (we are

in same transaction).

 // We have to take care of that on the client side.

 });

 if (!isAccepted) throw new Error("replaceDocument(metaDoc) returned false.");

 });

 if (!result.isAccepted) throw new Error("filter for metaDoc returned false.");

 }

 });

 if (!isAccepted) throw new Error("createDocument(actual doc) returned false.");

}

SQL to Javascript cheat sheet

The following table presents various SQL queries and the corresponding JavaScript queries.

As with SQL queries, document property keys (e.g. doc.id) are case-sensitive.

SQLSQL JAVASCRIPT QUERY APIJAVASCRIPT QUERY API DESCRIPTION BELOWDESCRIPTION BELOW

SELECT *
FROM docs

__.map(function(doc) {
 return doc;
});

1

SELECT docs.id, docs.message AS msg,
docs.actions
FROM docs

__.map(function(doc) {
 return {
 id: doc.id,
 msg: doc.message,
 actions:doc.actions
 };
});

2

SELECT *
FROM docs
WHERE docs.id="X998_Y998"

__.filter(function(doc) {
 return doc.id ==="X998_Y998";
});

3

SELECT *
FROM docs
WHERE ARRAY_CONTAINS(docs.Tags,
123)

__.filter(function(x) {
 return x.Tags &&
x.Tags.indexOf(123) > -1;
});

4

SELECT docs.id, docs.message AS msg
FROM docs
WHERE docs.id="X998_Y998"

__.chain()
 .filter(function(doc) {
 return doc.id ==="X998_Y998";
 })
 .map(function(doc) {
 return {
 id: doc.id,
 msg: doc.message
 };
 })
.value();

5

SELECT VALUE tag
FROM docs
JOIN tag IN docs.Tags
ORDER BY docs._ts

__.chain()
 .filter(function(doc) {
 return doc.Tags &&
Array.isArray(doc.Tags);
 })
 .sortBy(function(doc) {
 return doc._ts;
 })
 .pluck("Tags")
 .flatten()
 .value()

6

The following descriptions explain each query in the table above.

1. Results in all documents (paginated with continuation token) as is.

2. Projects the id, message (aliased to msg), and action from all documents.

3. Queries for documents with the predicate: id = "X998_Y998".

4. Queries for documents that have a Tags property and Tags is an array containing the value 123.

5. Queries for documents with a predicate, id = "X998_Y998", and then projects the id and message (aliased to

msg).

6. Filters for documents which have an array property, Tags, and sorts the resulting documents by the _ts

timestamp system property, and then projects + flattens the Tags array.

Runtime support

Security

Pre-compilation

Client SDK support

var markAntiquesSproc = new StoredProcedure

{

 Id = "ValidateDocumentAge",

 Body = @"

 function(docToCreate, antiqueYear) {

 var collection = getContext().getCollection();

 var response = getContext().getResponse();

 if(docToCreate.Year != undefined && docToCreate.Year < antiqueYear){

 docToCreate.antique = true;

 }

 collection.createDocument(collection.getSelfLink(), docToCreate, {},

 function(err, docCreated, options) {

 if(err) throw new Error('Error while creating document: ' + err.message);

 if(options.maxCollectionSizeInMb == 0) throw 'max collection size not found';

 response.setBody(docCreated);

 });

 }"

};

// register stored procedure

StoredProcedure createdStoredProcedure = await

client.CreateStoredProcedureAsync(UriFactory.CreateDocumentCollectionUri("db", "coll"), markAntiquesSproc);

dynamic document = new Document() { Id = "Borges_112" };

document.Title = "Aleph";

document.Year = 1949;

// execute stored procedure

Document createdDocument = await client.ExecuteStoredProcedureAsync<Document>

(UriFactory.CreateStoredProcedureUri("db", "coll", "sproc"), document, 1920);

DocumentDB JavaScript server side SDK provides support for the most of the mainstream JavaScript language

features as standardized by ECMA-262.

JavaScript stored procedures and triggers are sandboxed so that the effects of one script do not leak to the other

without going through the snapshot transaction isolation at the database level. The runtime environments are

pooled but cleaned of the context after each run. Hence they are guaranteed to be safe of any unintended side

effects from each other.

Stored procedures, triggers and UDFs are implicitly precompiled to the byte code format in order to avoid

compilation cost at the time of each script invocation. This ensures invocations of stored procedures are fast and

have a low footprint.

In addition to the Node.js client, DocumentDB supports .NET, .NET Core, Java, JavaScript, and Python SDKs. Stored

procedures, triggers and UDFs can be created and executed using any of these SDKs as well. The following

example shows how to create and execute a stored procedure using the .NET client. Note how the .NET types are

passed into the stored procedure as JSON and read back.

This sample shows how to use the .NET SDK to create a pre-trigger and create a document with the trigger

enabled.

http://azure.github.io/azure-documentdb-js-server/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://azure.github.io/azure-documentdb-js/
https://msdn.microsoft.com/library/azure/dn948556.aspx

Trigger preTrigger = new Trigger()

{

 Id = "CapitalizeName",

 Body = @"function() {

 var item = getContext().getRequest().getBody();

 item.id = item.id.toUpperCase();

 getContext().getRequest().setBody(item);

 }",

 TriggerOperation = TriggerOperation.Create,

 TriggerType = TriggerType.Pre

};

Document createdItem = await client.CreateDocumentAsync(UriFactory.CreateDocumentCollectionUri("db", "coll"),

new Document { Id = "documentdb" },

 new RequestOptions

 {

 PreTriggerInclude = new List<string> { "CapitalizeName" },

 });

UserDefinedFunction function = new UserDefinedFunction()

{

 Id = "LOWER",

 Body = @"function(input)

 {

 return input.toLowerCase();

 }"

};

foreach (Book book in client.CreateDocumentQuery(UriFactory.CreateDocumentCollectionUri("db", "coll"),

 "SELECT * FROM Books b WHERE udf.LOWER(b.Title) = 'war and peace'"))

{

 Console.WriteLine("Read {0} from query", book);

}

REST API

POST https://<url>/sprocs/ HTTP/1.1

authorization: <<auth>>

x-ms-date: Thu, 07 Aug 2014 03:43:10 GMT

var x = {

 "name": "createAndAddProperty",

 "body": function (docToCreate, addedPropertyName, addedPropertyValue) {

 var collectionManager = getContext().getCollection();

 collectionManager.createDocument(

 collectionManager.getSelfLink(),

 docToCreate,

 function(err, docCreated) {

 if(err) throw new Error('Error: ' + err.message);

 docCreated[addedPropertyName] = addedPropertyValue;

 getContext().getResponse().setBody(docCreated);

 });

 }

}

And the following example shows how to create a user defined function (UDF) and use it in a DocumentDB SQL

query.

All DocumentDB operations can be performed in a RESTful manner. Stored procedures, triggers and user-defined

functions can be registered under a collection by using HTTP POST. The following is an example of how to register

a stored procedure:

POST https://<url>/sprocs/<sproc> HTTP/1.1

authorization: <<auth>>

x-ms-date: Thu, 07 Aug 2014 03:43:20 GMT

[{ "name": "TestDocument", "book": "Autumn of the Patriarch"}, "Price", 200]

HTTP/1.1 200 OK

{

 name: 'TestDocument',

 book: ‘Autumn of the Patriarch’,

 id: ‘V7tQANV3rAkDAAAAAAAAAA==‘,

 ts: 1407830727,

 self: ‘dbs/V7tQAA==/colls/V7tQANV3rAk=/docs/V7tQANV3rAkDAAAAAAAAAA==/’,

 etag: ‘6c006596-0000-0000-0000-53e9cac70000’,

 attachments: ‘attachments/’,

 Price: 200

}

POST https://<url>/docs/ HTTP/1.1

authorization: <<auth>>

x-ms-date: Thu, 07 Aug 2014 03:43:10 GMT

x-ms-documentdb-pre-trigger-include: validateDocumentContents

x-ms-documentdb-post-trigger-include: bookCreationPostTrigger

{

 "name": "newDocument",

 “title”: “The Wizard of Oz”,

 “author”: “Frank Baum”,

 “pages”: 92

}

Sample code

Next steps

The stored procedure is registered by executing a POST request against the URI dbs/testdb/colls/testColl/sprocs

with the body containing the stored procedure to create. Triggers and UDFs can be registered similarly by issuing

a POST against /triggers and /udfs respectively. This stored procedure can then be executed by issuing a POST

request against its resource link:

Here, the input to the stored procedure is passed in the request body. Note that the input is passed as a JSON

array of input parameters. The stored procedure takes the first input as a document that is a response body. The

response we receive is as follows:

Triggers, unlike stored procedures, cannot be executed directly. Instead they are executed as part of an operation

on a document. We can specify the triggers to run with a request using HTTP headers. The following is request to

create a document.

Here the pre-trigger to be run with the request is specified in the x-ms-documentdb-pre-trigger-include header.

Correspondingly, any post-triggers are given in the x-ms-documentdb-post-trigger-include header. Note that

both pre- and post-triggers can be specified for a given request.

You can find more server-side code examples (including bulk-delete, and update) on our Github repository.

Want to share your awesome stored procedure? Please, send us a pull-request!

Once you have one or more stored procedures, triggers, and user-defined functions created, you can load them

https://github.com/Azure/azure-documentdb-js-server/tree/master/samples/stored-procedures/bulkDelete.js
https://github.com/Azure/azure-documentdb-js-server/tree/master/samples/stored-procedures/update.js
https://github.com/Azure/azure-documentdb-js-server/tree/master/samples

and view them in the Azure Portal using Script Explorer. For more information, see View stored procedures,

triggers, and user-defined functions using the DocumentDB Script Explorer.

You may also find the following references and resources useful in your path to learn more about DocumentDB

server-side programming:

Azure DocumentDB SDKs

DocumentDB Studio

JSON

JavaScript ECMA-262

JavaScript – JSON type system

Secure and Portable Database Extensibility

Service Oriented Database Architecture

Hosting the .NET Runtime in Microsoft SQL server

https://msdn.microsoft.com/library/azure/dn781482.aspx
https://github.com/mingaliu/DocumentDBStudio/releases
http://www.json.org/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.json.org/js.html
http://dl.acm.org/citation.cfm?id=276339
http://dl.acm.org/citation.cfm?id=1066267&coll=Portal&dl=GUIDE
http://dl.acm.org/citation.cfm?id=1007669

arramac • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • carolinacmoravia • mimig • Andrew Hoh

Performance and scale testing with Azure
DocumentDB
11/15/2016 • 4 min to read • Edit on GitHub

Contributors

NOTE

Run the performance testing application

NOTE

Performance and scale testing is a key step in application development. For many applications, the database tier

has a significant impact on the overall performance and scalability, and is therefore a critical component of

performance testing. Azure DocumentDB is purpose-built for elastic scale and predictable performance, and

therefore a great fit for applications that need a high-performance database tier.

This article is a reference for developers implementing performance test suites for their DocumentDB workloads,

or evaluating DocumentDB for high-performance application scenarios. It focuses primarily on isolated

performance testing of the database, but also includes best practices for production applications.

After reading this article, you will be able to answer the following questions:

Where can I find a sample .NET client application for performance testing of Azure DocumentDB?

How do I achieve high throughput levels with Azure DocumentDB from my client application?

To get started with code, please download the project from DocumentDB Performance Testing Sample.

The goal of this application is to demonstrate best practices for extracting better performance out of DocumentDB with a

small number of client machines. This was not made to demonstrate the peak capacity of the service, which can scale

limitlessly.

If you're looking for client-side configuration options to improve DocumentDB performance, see DocumentDB

performance tips.

The quickest way to get started is to compile and run the .NET sample below, as described in the steps below. You

can also review the source code and implement similar configurations to your own client applications.

S tep 1 :S tep 1 : Download the project from DocumentDB Performance Testing Sample, or fork the Github repository.

S tep 2 :S tep 2 : Modify the settings for EndpointUrl, AuthorizationKey, CollectionThroughput and DocumentTemplate

(optional) in App.config.

Before provisioning collections with high throughput, please refer to the Pricing Page to estimate the costs per collection.

DocumentDB bills storage and throughput independently on an hourly basis, so you can save costs by deleting or lowering

the throughput of your DocumentDB collections after testing.

Step 3 :S tep 3 : Compile and run the console app from the command line. You should see output like the following:

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-performance-testing.md
https://github.com/arramac
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/carolinacmoravia
https://github.com/mimig1
https://github.com/AndrewHoh
https://azure.microsoft.com/services/documentdb/
https://github.com/Azure/azure-documentdb-dotnet/tree/master/samples/documentdb-benchmark
https://github.com/Azure/azure-documentdb-dotnet/tree/master/samples/documentdb-benchmark
https://azure.microsoft.com/pricing/details/documentdb/

Summary:

Endpoint: https://docdb-scale-demo.documents.azure.com:443/

Collection : db.testdata at 50000 request units per second

Document Template*: Player.json

Degree of parallelism*: 500

DocumentDBBenchmark starting...

Creating database db

Creating collection testdata

Creating metric collection metrics

Retrying after sleeping for 00:03:34.1720000

Starting Inserts with 500 tasks

Inserted 661 docs @ 656 writes/s, 6860 RU/s (18B max monthly 1KB reads)

Inserted 6505 docs @ 2668 writes/s, 27962 RU/s (72B max monthly 1KB reads)

Inserted 11756 docs @ 3240 writes/s, 33957 RU/s (88B max monthly 1KB reads)

Inserted 17076 docs @ 3590 writes/s, 37627 RU/s (98B max monthly 1KB reads)

Inserted 22106 docs @ 3748 writes/s, 39281 RU/s (102B max monthly 1KB reads)

Inserted 28430 docs @ 3902 writes/s, 40897 RU/s (106B max monthly 1KB reads)

Inserted 33492 docs @ 3928 writes/s, 41168 RU/s (107B max monthly 1KB reads)

Inserted 38392 docs @ 3963 writes/s, 41528 RU/s (108B max monthly 1KB reads)

Inserted 43371 docs @ 4012 writes/s, 42051 RU/s (109B max monthly 1KB reads)

Inserted 48477 docs @ 4035 writes/s, 42282 RU/s (110B max monthly 1KB reads)

Inserted 53845 docs @ 4088 writes/s, 42845 RU/s (111B max monthly 1KB reads)

Inserted 59267 docs @ 4138 writes/s, 43364 RU/s (112B max monthly 1KB reads)

Inserted 64703 docs @ 4197 writes/s, 43981 RU/s (114B max monthly 1KB reads)

Inserted 70428 docs @ 4216 writes/s, 44181 RU/s (115B max monthly 1KB reads)

Inserted 75868 docs @ 4247 writes/s, 44505 RU/s (115B max monthly 1KB reads)

Inserted 81571 docs @ 4280 writes/s, 44852 RU/s (116B max monthly 1KB reads)

Inserted 86271 docs @ 4273 writes/s, 44783 RU/s (116B max monthly 1KB reads)

Inserted 91993 docs @ 4299 writes/s, 45056 RU/s (117B max monthly 1KB reads)

Inserted 97469 docs @ 4292 writes/s, 44984 RU/s (117B max monthly 1KB reads)

Inserted 99736 docs @ 4192 writes/s, 43930 RU/s (114B max monthly 1KB reads)

Inserted 99997 docs @ 4013 writes/s, 42051 RU/s (109B max monthly 1KB reads)

Inserted 100000 docs @ 3846 writes/s, 40304 RU/s (104B max monthly 1KB reads)

Summary:

Inserted 100000 docs @ 3834 writes/s, 40180 RU/s (104B max monthly 1KB reads)

DocumentDBBenchmark completed successfully.

Next steps

Step 4 (if necessary) :S tep 4 (if necessary) : The throughput reported (RU/s) from the tool should be the same or higher than the

provisioned throughput of the collection. If not, increasing the DegreeOfParallelism in small increments may help

you reach the limit. If the throughput from your client app plateaus, launching multiple instances of the app on the

same or different machines will help you reach the provisioned limit across the different instances. If you need

help with this step, please, write an email to askdocdb@microsoft.com or fill a support ticket.

Once you have the app running, you can try different Indexing policies and Consistency levels to understand their

impact on throughput and latency. You can also review the source code and implement similar configurations to

your own test suites or production applications.

In this article, we looked at how you can perform performance and scale testing with DocumentDB using a .NET

console app. Please refer to the links below for additional information on working with DocumentDB.

DocumentDB performance testing sample

Client configuration options to improve DocumentDB performance

Server-side partitioning in DocumentDB

DocumentDB collections and performance levels

https://github.com/Azure/azure-documentdb-dotnet/tree/master/samples/documentdb-benchmark

DocumentDB .NET SDK documentation on MSDN

DocumentDB .NET samples

DocumentDB blog on performance tips

https://msdn.microsoft.com/library/azure/dn948556.aspx
https://github.com/Azure/azure-documentdb-net
https://azure.microsoft.com/blog/2015/01/20/performance-tips-for-azure-documentdb-part-1-2/

mimig • Theano Petersen • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • jayantacs

Performance tips for DocumentDB
11/22/2016 • 13 min to read • Edit on GitHub

Contributors

Networking

Azure DocumentDB is a fast and flexible distributed database that scales seamlessly with guaranteed latency and

throughput. You do not have to make major architecture changes or write complex code to scale your database

with DocumentDB. Scaling up and down is as easy as making a single API call or SDK method call. However,

because DocumentDB is accessed via network calls there are client-side optimizations you can make to achieve

peak performance.

So if you're asking "How can I improve my database performance?" consider the following options:

 1. Connection policy : Use direct connection modeConnection policy : Use direct connection mode

How a client connects to Azure DocumentDB has important implications on performance, especially in

terms of observed client-side latency. There are two key configuration settings available for configuring

client Connection Policy – the connection mode and the connection protocol. The two available modes are:

a. Gateway Mode (default)

b. Direct Mode

Gateway Mode is supported on all SDK platforms and is the configured default. If your application

runs within a corporate network with strict firewall restrictions, Gateway Mode is the best choice

since it uses the standard HTTPS port and a single endpoint. The performance tradeoff, however, is

that Gateway Mode involves an additional network hop every time data is read or written to

DocumentDB. Because of this, Direct Mode offers better performance due to fewer network hops.

2. Connection policy : Use the TCP protocolConnection policy : Use the TCP protocol

When leveraging Direct Mode, there are two protocol options available:

TCP

HTTPS

DocumentDB offers a simple and open RESTful programming model over HTTPS. Additionally, it

offers an efficient TCP protocol, which is also RESTful in its communication model and is available

through the .NET client SDK. Both Direct TCP and HTTPS use SSL for initial authentication and

encrypting traffic. For best performance, use the TCP protocol when possible.

When using TCP in Gateway Mode, TCP Port 443 is the DocumentDB port, and 10250 is the

MongoDB API port. When using TCP in Direct Mode, in addition to the Gateway ports, you'll need to

ensure the port range between 10000 and 20000 is open because DocumentDB uses dynamic TCP

ports. If these ports are not open and you attempt to use TCP, you will receive a 503 Service

Unavailable error.

The Connectivity Mode is configured during the construction of the DocumentClient instance with

the ConnectionPolicy parameter. If Direct Mode is used, the Protocol can also be set within the

ConnectionPolicy parameter.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-performance-tips.md
https://github.com/mimig1
https://github.com/v-thepet
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/jayantacs

 await client.OpenAsync();

var serviceEndpoint = new Uri("https://contoso.documents.net");

var authKey = new "your authKey from Azure Mngt Portal";

DocumentClient client = new DocumentClient(serviceEndpoint, authKey,

new ConnectionPolicy

{

 ConnectionMode = ConnectionMode.Direct,

 ConnectionProtocol = Protocol.Tcp

});

Because TCP is only supported in Direct Mode, if Gateway Mode is used, then the HTTPS protocol is

always used to communicate with the Gateway and the Protocol value in the ConnectionPolicy is

ignored.

3. Call OpenAsync to avoid star tup latency on fir st requestCall OpenAsync to avoid star tup latency on fir st request

By default, the first request will have a higher latency because it has to fetch the address routing table. To

avoid this startup latency on the first request, you should call OpenAsync() once during initialization as

follows.

 4. Collocate cl ients in same Azure region for per formanceCollocate cl ients in same Azure region for per formance

When possible, place any applications calling DocumentDB in the same region as the DocumentDB

database. For an approximate comparison, calls to DocumentDB within the same region complete within 1-

2 ms, but the latency between the West and East coast of the US is >50 ms. This latency can likely vary from

request to request depending on the route taken by the request as it passes from the client to the Azure

datacenter boundary. The lowest possible latency is achieved by ensuring the calling application is located

within the same Azure region as the provisioned DocumentDB endpoint. For a list of available regions, see

Azure Regions.

https://azure.microsoft.com/regions/#services

SDK Usage

5. Increase number of threads/tasksIncrease number of threads/tasks

Since calls to DocumentDB are made over the network, you may need to vary the degree of parallelism of

your requests so that the client application spends very little time waiting between requests. For example, if

you're using .NET's Task Parallel Library, create in the order of 100s of Tasks reading or writing to

DocumentDB.

1. Install the most recent SDKInstall the most recent SDK

The DocumentDB SDKs are constantly being improved to provide the best performance. See the

DocumentDB SDK pages to determine the most recent SDK and review improvements.

2. Use a s ingleton DocumentDB client for the l ifetime of your applicationUse a s ingleton DocumentDB client for the l ifetime of your application

Note that each DocumentClient instance is thread-safe and performs efficient connection management and

address caching when operating in Direct Mode. To allow efficient connection management and better

performance by DocumentClient, it is recommended to use a single instance of DocumentClient per

AppDomain for the lifetime of the application.

3. Increase System.Net MaxConnections per hostIncrease System.Net MaxConnections per host

DocumentDB requests are made over HTTPS/REST by default, and are subjected to the default connection

limit per hostname or IP address. You may need to set the MaxConnections to a higher value (100-1000) so

that the client library can utilize multiple simultaneous connections to DocumentDB. In the .NET SDK 1.8.0

and above, the default value for ServicePointManager.DefaultConnectionLimit is 50 and to change the

value, you can set the Documents.Client.ConnectionPolicy.MaxConnectionLimit to a higher value.

4. Tuning parallel quer ies for partitioned collectionsTuning parallel quer ies for partitioned collections

DocumentDB .NET SDK version 1.9.0 and above support parallel queries, which enable you to query a

partitioned collection in parallel (see Working with the SDKs and the related code samples for more info).

Parallel queries are designed to improve query latency and throughput over their serial counterpart.

Parallel queries provide two parameters that users can tune to custom-fit their requirements, (a)

MaxDegreeOfParallelism: to control the maximum number of partitions than can be queried in parallel, and

(b) MaxBufferedItemCount: to control the number of pre-fetched results.

(a) Tuning MaxDegreeOfParallel ism\:Tuning MaxDegreeOfParallel ism\: Parallel query works by querying multiple partitions in parallel.

However, data from an individual partitioned collect is fetched serially with respect to the query. So, setting

the MaxDegreeOfParallelism to the number of partitions has the maximum chance of achieving the most

performant query, provided all other system conditions remain the same. If you don't know the number of

partitions, you can set the MaxDegreeOfParallelism to a high number, and the system will choose the

minimum (number of partitions, user provided input) as the MaxDegreeOfParallelism.

https://msdn.microsoft.com//library/dd460717.aspx
https://msdn.microsoft.com/library/system.net.servicepointmanager.defaultconnectionlimit.aspx
https://msdn.microsoft.com/en-us/library/azure/microsoft.azure.documents.client.connectionpolicy.maxconnectionlimit.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/code-samples/Queries/Program.cs

 IQueryable<dynamic> authorResults = client.CreateDocumentQuery(documentCollection.SelfLink, "SELECT

p.Author FROM Pages p WHERE p.Title = 'About Seattle'", new FeedOptions { MaxItemCount = 1000 });

It is important to note that parallel queries produce the best benefits if the data is evenly distributed across

all partitions with respect to the query. If the partitioned collection is partitioned such a way that all or a

majority of the data returned by a query is concentrated in a few partitions (one partition in worst case),

then the performance of the query would be bottlenecked by those partitions.

(b) Tuning MaxBufferedItemCount\:Tuning MaxBufferedItemCount\: Parallel query is designed to pre-fetch results while the current

batch of results is being processed by the client. The pre-fetching helps in overall latency improvement of a

query. MaxBufferedItemCount is the parameter to limit the amount of pre-fetched results. Setting

MaxBufferedItemCount to the expected number of results returned (or a higher number) allows the query

to receive maximum benefit from pre-fetching.

Note that pre-fetching works the same way irrespective of the MaxDegreeOfParallelism, and there is a

single buffer for the data from all partitions.

5. Turn on server-s ide GCTurn on server-s ide GC

Reducing the frequency of garbage collection may help in some cases. In .NET, set gcServer to true.

6. Implement backoff at RetryAfter intervalsImplement backoff at RetryAfter intervals

During performance testing, you should increase load until a small rate of requests get throttled. If

throttled, the client application should backoff on throttle for the server-specified retry interval. Respecting

the backoff ensures that you spend minimal amount of time waiting between retries. Retry policy support is

included in Version 1.8.0 and above of the DocumentDB .NET and Java, version 1.9.0 and above of the

Node.js and Python, and all supported versions of the .NET Core SDKs. For more information, see Exceeding

reserved throughput limits and RetryAfter.

7. Scale out your cl ient-workloadScale out your cl ient-workload

If you are testing at high throughput levels (>50,000 RU/s), the client application may become the

bottleneck due to the machine capping out on CPU or Network utilization. If you reach this point, you can

continue to push the DocumentDB account further by scaling out your client applications across multiple

servers.

8. Cache document UR Is for lower read latencyCache document UR Is for lower read latency

 Cache document URIs whenever possible for the best read performance.

9. Tune the page s ize for quer ies/read feeds for better per formanceTune the page s ize for quer ies/read feeds for better per formance

When performing a bulk read of documents using read feed functionality (i.e., ReadDocumentFeedAsync)

or when issuing a DocumentDB SQL query, the results are returned in a segmented fashion if the result set

is too large. By default, results are returned in chunks of 100 items or 1 MB, whichever limit is hit first.

To reduce the number of network round trips required to retrieve all applicable results, you can increase

the page size using x-ms-max-item-count request header to up to 1000. In cases where you need to display

only a few results, e.g., if your user interface or application API returns only 10 results a time, you can also

decrease the page size to 10 to reduce the throughput consumed for reads and queries.

You may also set the page size using the available DocumentDB SDKs. For example:

10. Increase number of threads/tasksIncrease number of threads/tasks

See Increase number of threads/tasks in the Networking section.

https://msdn.microsoft.com/library/ms229357.aspx
https://msdn.microsoft.com/library/microsoft.azure.documents.documentclientexception.retryafter.aspx

Indexing Policy

Throughput

 var collection = new DocumentCollection { Id = "excludedPathCollection" };

 collection.IndexingPolicy.IncludedPaths.Add(new IncludedPath { Path = "/*" });

 collection.IndexingPolicy.ExcludedPaths.Add(new ExcludedPath { Path = "/nonIndexedContent/*");

 collection = await client.CreateDocumentCollectionAsync(UriFactory.CreateDatabaseUri("db"), excluded);

1. Use lazy indexing for faster peak time ingestion ratesUse lazy indexing for faster peak time ingestion rates

DocumentDB allows you to specify – at the collection level – an indexing policy, which enables you to

choose if you want the documents in a collection to be automatically indexed or not. In addition, you may

also choose between synchronous (Consistent) and asynchronous (Lazy) index updates. By default, the

index is updated synchronously on each insert, replace, or delete of a document to the collection.

Synchronously mode enables the queries to honor the same consistency level as that of the document

reads without any delay for the index to “catch up".

Lazy indexing may be considered for scenarios in which data is written in bursts, and you want to amortize

the work required to index content over a longer period of time. Lazy indexing also allows you to use your

provisioned throughput effectively and serve write requests at peak times with minimal latency. It is

important to note, however, that when lazy indexing is enabled, query results will be eventually consistent

regardless of the consistency level configured for the DocumentDB account.

Hence, Consistent indexing mode (IndexingPolicy.IndexingMode is set to Consistent) incurs the highest

request unit charge per write, while Lazy indexing mode (IndexingPolicy.IndexingMode is set to Lazy) and

no indexing (IndexingPolicy.Automatic is set to False) have zero indexing cost at the time of write.

2. Exclude unused paths from indexing for faster w r itesExclude unused paths from indexing for faster w r ites

DocumentDB’s indexing policy also allows you to specify which document paths to include or exclude from

indexing by leveraging Indexing Paths (IndexingPolicy.IncludedPaths and IndexingPolicy.ExcludedPaths).

The use of indexing paths can offer improved write performance and lower index storage for scenarios in

which the query patterns are known beforehand, as indexing costs are directly correlated to the number of

unique paths indexed. For example, the following code shows how to exclude an entire section of the

documents (a.k.a. a subtree) from indexing using the "*" wildcard.

For more information, see DocumentDB indexing policies.

 1. Measure and tune for lower request units/second usageMeasure and tune for lower request units/second usage

DocumentDB offers a rich set of database operations including relational and hierarchical queries with

UDFs, stored procedures, and triggers – all operating on the documents within a database collection. The

cost associated with each of these operations vary based on the CPU, IO, and memory required to complete

the operation. Instead of thinking about and managing hardware resources, you can think of a request unit

(RU) as a single measure for the resources required to perform various database operations and service an

application request.

Request units are provisioned for each database account based on the number of capacity units that you

purchase. Request unit consumption is evaluated as a rate per second. Applications that exceed the

provisioned request unit rate for their account is limited until the rate drops below the reserved level for

the account. If your application requires a higher level of throughput, you can purchase additional capacity

units.

The complexity of a query impacts how many Request Units are consumed for an operation. The number of

predicates, nature of the predicates, number of UDFs, and the size of the source data set all influence the

cost of query operations.

 // Measure the performance (request units) of writes

 ResourceResponse<Document> response = await client.CreateDocumentAsync(collectionSelfLink, myDocument);

 Console.WriteLine("Insert of document consumed {0} request units", response.RequestCharge);

 // Measure the performance (request units) of queries

 IDocumentQuery<dynamic> queryable = client.CreateDocumentQuery(collectionSelfLink,

queryString).AsDocumentQuery();

 while (queryable.HasMoreResults)

 {

 FeedResponse<dynamic> queryResponse = await queryable.ExecuteNextAsync<dynamic>();

 Console.WriteLine("Query batch consumed {0} request units", queryResponse.RequestCharge);

 }

 HTTP Status 429,

 Status Line: RequestRateTooLarge

 x-ms-retry-after-ms :100

To measure the overhead of any operation (create, update, or delete), inspect the x-ms-request-charge

header (or the equivalent RequestCharge property in ResourceResponse or FeedResponse in the .NET SDK)

to measure the number of request units consumed by these operations.

The request charge returned in this header is a fraction of your provisioned throughput (i.e., 2000 RUs /

second). For example, if the query above returns 1000 1KB documents, the cost of the operation will be

1000. As such, within one second, the server honors only two such requests before throttling subsequent

requests. For more information, see Request units and the request unit calculator.

2. Handle rate l im iting/request rate too largeHandle rate l im iting/request rate too large

When a client attempts to exceed the reserved throughput for an account, there are no performance

degradation at the server and no use of throughput capacity beyond the reserved level. The server will

preemptively end the request with RequestRateTooLarge (HTTP status code 429) and return the x-ms-retry-

after-ms header indicating the amount of time, in milliseconds, that the user must wait before reattempting

the request.

The SDKs all implicitly catch this response, respect the server-specified retry-after header, and retry the

request. Unless your account is being accessed concurrently by multiple clients, the next retry will succeed.

If you have more than one client cumulatively operating consistently above the request rate, the default

retry count currently set to 9 internally by the client may not suffice; in this case, the client throws a

DocumentClientException with status code 429 to the application. The default retry count can be changed

by setting the RetryOptions on the ConnectionPolicy instance. By default, the DocumentClientException

with status code 429 is returned after a cumulative wait time of 30 seconds if the request continues to

operate above the request rate. This occurs even when the current retry count is less than the max retry

count, be it the default of 9 or a user-defined value.

While the automated retry behavior helps to improve resiliency and usability for the most applications, it

might come at odds when doing performance benchmarks, especially when measuring latency. The client-

observed latency will spike if the experiment hits the server throttle and causes the client SDK to silently

retry. To avoid latency spikes during performance experiments, measure the charge returned by each

operation and ensure that requests are operating below the reserved request rate. For more information,

see Request units.

3. Design for smaller documents for higher throughputDesign for smaller documents for higher throughput

The request charge (i.e. request processing cost) of a given operation is directly correlated to the size of the

document. Operations on large documents cost more than operations for small documents.

https://www.documentdb.com/capacityplanner

Next steps

For a sample application used to evaluate DocumentDB for high-performance scenarios on a few client machines,

see Performance and scale testing with Azure DocumentDB.

Also, to learn more about designing your application for scale and high performance, see Partitioning and scaling

in Azure DocumentDB.

Andrew Hoh • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • mimig • Stephen Baron

DocumentDB protocol support for MongoDB
11/15/2016 • 1 min to read • Edit on GitHub

Contributors

What is Azure DocumentDB?

What is DocumentDB protocol support for MongoDB?

Next steps

Azure DocumentDB is a fully managed NoSQL database service built for fast and predictable performance, high

availability, automatic scaling, and ease of development. Its flexible data model, consistent low latencies, and rich

query capabilities make it a great fit for web, mobile, gaming, IoT, and many other applications that need seamless

scale. Read more in the DocumentDB introduction.

DocumentDB databases can now be used as the data store for apps written for MongoDB. Using existing drivers for

MongoDB, applications can easily and transparently communicate with DocumentDB, in many cases by simply

changing a connection string. Using this preview functionality, customers can easily build and run applications in

the Azure cloud - leveraging DocumentDB's fully managed and scalable NoSQL databases - while continuing to

use familiar skills and tools for MongoDB.

DocumentDB protocol support for MongoDB enables the core MongoDB API functions to Create, Read, Update and

Delete (CRUD) data as well as query the database. The currently implemented capabilities have been prioritized

based on the needs of common platforms, frameworks, tools, and large scale MongoDB customers evaluating

Azure for their cloud platform.

Learn how to create a DocumentDB account with protocol support for MongoDB.

Learn how to connect to a DocumentDB account with protocol support for MongoDB.

Learn how to use MongoChef with a DocumentDB account with protocol support for MongoDB.

Explore DocumentDB with protocol support for MongoDB samples.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-protocol-mongodb.md
https://github.com/AndrewHoh
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/mimig1
https://github.com/stephbaron
https://docs.mongodb.org/ecosystem/drivers/

Andrew Hoh • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • Kristine Toliver • mimig • Stephen Baron

How to create a DocumentDB account with protocol
support for MongoDB using the Azure portal
11/15/2016 • 2 min to read • Edit on GitHub

Contributors

Create the account

To create an Azure DocumentDB account with protocol support for MongoDB, you must:

Have an Azure account. You can get a free Azure account if you don't have one already.

To create a DocumentDB account with protocol support for MongoDB, perform the following steps.

1. In a new window, sign in to the Azure Portal.

2. Click NEWNEW , click Data + S torageData + S torage, click See allSee all , and then search the Data + S torageData + S torage category for

"DocumentDB protocol". Click DocumentDB - Protocol Support for MongoDBDocumentDB - Protocol Support for MongoDB.

3. Alternatively, in the Data + S torageData + S torage category, under S torageStorage, click MoreMore, and then click Load moreLoad more one

or more times to display DocumentDB - Protocol Support for MongoDBDocumentDB - Protocol Support for MongoDB. Click DocumentDB -DocumentDB -

Protocol Support for MongoDBProtocol Support for MongoDB.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-create-mongodb-account.md
https://github.com/AndrewHoh
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/ktoliver
https://github.com/mimig1
https://github.com/stephbaron
https://azure.microsoft.com/free/
https://portal.azure.com

4. In the DocumentDB - Protocol Support for MongoDB (prev iew)DocumentDB - Protocol Support for MongoDB (prev iew) blade, click CreateCreate to launch the

preview signup process.

5. In the DocumentDB accountDocumentDB account blade, click S ign up to prev iewS ign up to prev iew . Read the information and then click OKOK.

6. After accepting the preview terms, you will be returned to the create blade. In the DocumentDB accountDocumentDB account

blade, specify the desired configuration for the account.

In the IDID box, enter a name to identify the account. When the IDID is validated, a green check mark

appears in the IDID box. The IDID value becomes the host name within the URI. The IDID may contain only

lowercase letters, numbers, and the '-' character, and must be between 3 and 50 characters. Note that

documents.azure.com is appended to the endpoint name you choose, the result of which will become

your account endpoint.

For Subscr iptionSubscr iption , select the Azure subscription that you want to use for the account. If your account

has only one subscription, that account is selected by default.

In Resource GroupResource Group, select or create a resource group for the account. By default, an existing

Resource group under the Azure subscription will be chosen. You may, however, choose to select to

create a new resource group to which you would like to add the account. For more information, see

Using the Azure portal to manage your Azure resources.

Use LocationLocation to specify the geographic location in which to host the account.

Optional: Check Pin to dashboardPin to dashboard. If pinned to dashboard, follow S tep 8S tep 8 below to view your new

account's left-hand navigation.

7. Once the new account options are configured, click CreateCreate. It can take a few minutes to create the account. If

pinned to the dashboard, you can monitor the provisioning progress on the Startboard.

file:///D:/azure-docs-pr/_site/azure/.tmp/azure-portal/resource-group-portal.html

8. To access your new account, click DocumentDB (NoSQL)DocumentDB (NoSQL) on the left-hand menu. In your list of regular

DocumentDB and DocumentDB with Mongo protocol support accounts, click on your new account's name.

If not pinned to the dashboard, you can monitor your progress from the Notifications hub.

9. It is now ready for use with the default settings.

Next steps

Learn how to connect to a DocumentDB account with protocol support for MongoDB.

Andrew Hoh • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • mimig • Stephen Baron

How to connect to a DocumentDB account with
protocol support for MongoDB
11/15/2016 • 1 min to read • Edit on GitHub

Contributors

Get the account's connection string information

Learn how to connect to an Azure DocumentDB account with protocol support for MongoDB using the standard

MongoDB connection string URI format.

1. In a new window, sign in to the Azure Portal.

2. In the Left Nav igationLeft Nav igation bar of the Account Blade, click Connection S tr ingConnection S tr ing. To navigate to the AccountAccount

BladeBlade, on the Jumpbar click More Serv icesMore Serv ices , click DocumentDB (NoSQL)DocumentDB (NoSQL) , and then select the

DocumentDB account with protocol support for MongoDB.

3. The Connection S tr ing InformationConnection S tr ing Information blade opens and has all the information necessary to connect to the

account using a driver for MongoDB, including a pre-constructed connection string.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-connect-mongodb-account.md
https://github.com/AndrewHoh
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/mimig1
https://github.com/stephbaron
https://portal.azure.com

Connection string requirements

mongodb://username:password@host:port/[database]?ssl=true

mongodb://contoso123:<password@contoso123.documents.azure.com:10250/mydatabase?ssl=true

Connecting with the C# driver for MongoDB

It is important to note that DocumentDB supports the standard MongoDB connection string URI format, with a

couple of specific requirements: DocumentDB accounts require authentication and secure communication via SSL.

Thus, the connection string format is:

Where the values of this string are available in the Connection String blade shown above.

Username (required)

Password (required)

Host (required)

Port (required)

Database (optional)

ssl=true (required)

DocumentDB account name

DocumentDB account password

FQDN of DocumentDB account

10250

The default database used by the connection

For example, consider the account shown in the Connection String Information above. A valid connection string is:

As already mentioned, all DocumentDB accounts require both authentication and secure communication via SSL.

While the MongoDB connection string URI format supports an ssl=true query string parameter, working with the

MongoDB C# driver requires use of the MongoClientSettings object when creating a MongoClient. Given the

account information above, the following code snippet shows how to connect to the account and work with the

“Tasks” database.

 MongoClientSettings settings = new MongoClientSettings();

 settings.Server = new MongoServerAddress("contoso123.documents.azure.com", 10250);

 settings.UseSsl = true;

 settings.SslSettings = new SslSettings();

 settings.SslSettings.EnabledSslProtocols = SslProtocols.Tls12;

 MongoIdentity identity = new MongoInternalIdentity("Tasks", "contoso123");

 MongoIdentityEvidence evidence = new PasswordEvidence("<password>");

 settings.Credentials = new List<MongoCredential>()

 {

 new MongoCredential("SCRAM-SHA-1", identity, evidence)

 };

 MongoClient client = new MongoClient(settings);

 var database = client.GetDatabase("Tasks",);

Next steps

Learn how to use MongoChef with a DocumentDB account with protocol support for MongoDB.

Explore DocumentDB with protocol support for MongoDB samples.

Andrew Hoh • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • James Dunn • mimig • Stephen Baron

Use MongoChef with a DocumentDB account with
protocol support for MongoDB
11/15/2016 • 2 min to read • Edit on GitHub

Contributors

Create the connection in MongoChef

To connect to an Azure DocumentDB account with protocol support for MongoDB using MongoChef, you must:

Download and install MongoChef

Have your DocumentDB account with protocol support for MongoDB connection string information

To add your DocumentDB account with protocol support for MongoDB to the MongoChef connection manager,

perform the following steps.

1. Retrieve your DocumentDB with protocol support for MongoDB connection information using the

instructions here.

2. Click ConnectConnect to open the Connection Manager, then click New ConnectionNew Connection

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-mongodb-mongochef.md
https://github.com/AndrewHoh
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/Ja-Dunn
https://github.com/mimig1
https://github.com/stephbaron
http://3t.io/mongochef

3. In the New ConnectionNew Connection window, on the ServerServer tab, enter the HOST (FQDN) of the DocumentDB account

with protocol support for MongoDB and the PORT.

4. In the New ConnectionNew Connection window, on the AuthenticationAuthentication tab, choose Authentication Mode S tandardStandard

(MONGODB-CR or SCARM-SHA-1)(MONGODB-CR or SCARM-SHA-1) and enter the USERNAME and PASSWORD. Accept the default

authentication db (admin) or provide your own value.

5. In the New ConnectionNew Connection window, on the SSLSSL tab, check the Use SSL protocol to connectUse SSL protocol to connect check box and

the Accept self-s igned SSL cer tificatesAccept self-s igned SSL cer tificates radio button.

6. Click the Test ConnectionTest Connection button to validate the connection information, click OKOK to return to the New

Connection window, and then click SaveSave.

Use MongoChef to create a database, collection, and documents

To create a database, collection, and documents using MongoChef, perform the following steps.

1. In Connection ManagerConnection Manager , highlight the connection and click ConnectConnect.

2. Right click the host and choose Add DatabaseAdd Database. Provide a database name and click OKOK.

3. Right click the database and choose Add CollectionAdd Collection . Provide a collection name and click CreateCreate.

4. Click the CollectionCollection menu item, then click Add DocumentAdd Document.

 {

 "_id": "AndersenFamily",

 "lastName": "Andersen",

 "parents": [

 { "firstName": "Thomas" },

 { "firstName": "Mary Kay"}

],

 "children": [

 {

 "firstName": "Henriette Thaulow", "gender": "female", "grade": 5,

 "pets": [{ "givenName": "Fluffy" }]

 }

],

 "address": { "state": "WA", "county": "King", "city": "seattle" },

 "isRegistered": true

 }

5. In the Add Document dialog, paste the following and then click Add DocumentAdd Document.

6. Add another document, this time with the following content.

Next steps

 {

 "_id": "WakefieldFamily",

 "parents": [

 { "familyName": "Wakefield", "givenName": "Robin" },

 { "familyName": "Miller", "givenName": "Ben" }

],

 "children": [

 {

 "familyName": "Merriam",

 "givenName": "Jesse",

 "gender": "female", "grade": 1,

 "pets": [

 { "givenName": "Goofy" },

 { "givenName": "Shadow" }

]

 },

 {

 "familyName": "Miller",

 "givenName": "Lisa",

 "gender": "female",

 "grade": 8 }

],

 "address": { "state": "NY", "county": "Manhattan", "city": "NY" },

 "isRegistered": false

 }

7. Execute a sample query. For example, search for families with the last name 'Andersen' and return the

parents and state fields.

Explore DocumentDB with protocol support for MongoDB samples.

Andrew Hoh • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • James Dunn • mimig • Stephen Baron

DocumentDB protocol support for MongoDB
examples
11/15/2016 • 2 min to read • Edit on GitHub

Contributors

Get started with a sample ASP.NET MVC task list application

To use these examples, you must:

Create an Azure DocumentDB account with protocol support for MongoDB.

Retrieve your DocumentDB account with protocol support for MongoDB connection string information.

You can use the Create a web app in Azure that connects to MongoDB running on a virtual machine tutorial, with

minimal modification, to quickly setup a MongoDB application (either locally or published to an Azure web app)

that connects to a DocumentDB account with protocol support for MongoDB.

 using System;

 using System.Collections.Generic;

 using System.Linq;

 using System.Web;

 using MyTaskListApp.Models;

 using MongoDB.Driver;

 using MongoDB.Bson;

 using System.Configuration;

 using System.Security.Authentication;

 namespace MyTaskListApp

 {

 public class Dal : IDisposable

 {

 //private MongoServer mongoServer = null;

 private bool disposed = false;

 // To do: update the connection string with the DNS name

 // or IP address of your server.

 //For example, "mongodb://testlinux.cloudapp.net

 private string connectionString = "mongodb://localhost:27017";

 private string userName = "<your user name>";

 private string host = "<your host>";

 private string password = "<your password>";

 // This sample uses a database named "Tasks" and a

 //collection named "TasksList". The database and collection

 //will be automatically created if they don't already exist.

 private string dbName = "Tasks";

 private string collectionName = "TasksList";

 // Default constructor.

 public Dal()

 {

 }

 // Gets all Task items from the MongoDB server.

 public List<MyTask> GetAllTasks()

1. Follow the tutorial, with one modification. Replace the Dal.cs code with this:

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-mongodb-samples.md
https://github.com/AndrewHoh
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/Ja-Dunn
https://github.com/mimig1
https://github.com/stephbaron
file:///D:/azure-docs-pr/_site/azure/.tmp/app-service-web/web-sites-dotnet-store-data-mongodb-vm.html

 public List<MyTask> GetAllTasks()

 {

 try

 {

 var collection = GetTasksCollection();

 return collection.Find(new BsonDocument()).ToList();

 }

 catch (MongoConnectionException)

 {

 return new List<MyTask>();

 }

 }

 // Creates a Task and inserts it into the collection in MongoDB.

 public void CreateTask(MyTask task)

 {

 var collection = GetTasksCollectionForEdit();

 try

 {

 collection.InsertOne(task);

 }

 catch (MongoCommandException ex)

 {

 string msg = ex.Message;

 }

 }

 private IMongoCollection<MyTask> GetTasksCollection()

 {

 MongoClientSettings settings = new MongoClientSettings();

 settings.Server = new MongoServerAddress(host, 10250);

 settings.UseSsl = true;

 settings.SslSettings = new SslSettings();

 settings.SslSettings.EnabledSslProtocols = SslProtocols.Tls12;

 MongoIdentity identity = new MongoInternalIdentity(dbName, userName);

 MongoIdentityEvidence evidence = new PasswordEvidence(password);

 settings.Credentials = new List<MongoCredential>()

 {

 new MongoCredential("SCRAM-SHA-1", identity, evidence)

 };

 MongoClient client = new MongoClient(settings);

 var database = client.GetDatabase(dbName);

 var todoTaskCollection = database.GetCollection<MyTask>(collectionName);

 return todoTaskCollection;

 }

 private IMongoCollection<MyTask> GetTasksCollectionForEdit()

 {

 MongoClientSettings settings = new MongoClientSettings();

 settings.Server = new MongoServerAddress(host, 10250);

 settings.UseSsl = true;

 settings.SslSettings = new SslSettings();

 settings.SslSettings.EnabledSslProtocols = SslProtocols.Tls12;

 MongoIdentity identity = new MongoInternalIdentity(dbName, userName);

 MongoIdentityEvidence evidence = new PasswordEvidence(password);

 settings.Credentials = new List<MongoCredential>()

 {

 new MongoCredential("SCRAM-SHA-1", identity, evidence)

 };

 MongoClient client = new MongoClient(settings);

 var database = client.GetDatabase(dbName);

 var todoTaskCollection = database.GetCollection<MyTask>(collectionName);

 return todoTaskCollection;

 }

Next steps

 # region IDisposable

 public void Dispose()

 {

 this.Dispose(true);

 GC.SuppressFinalize(this);

 }

 protected virtual void Dispose(bool disposing)

 {

 if (!this.disposed)

 {

 if (disposing)

 {

 }

 }

 this.disposed = true;

 }

 # endregion

 }

 }

3. Use the app!

2. Modify the following variables in the Dal.cs file per your account settings:

private string userName = ""; private string host = ""; private string password = "";

Learn how to use MongoChef with a DocumentDB account with protocol support for MongoDB.

mimig • Theano Petersen • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • v-aljenk • Jennifer Hubbard • Ross McAllister

• Dene Hager

How to create a DocumentDB NoSQL account using
the Azure portal
11/22/2016 • 3 min to read • Edit on GitHub

Contributors

To build a database with Microsoft Azure DocumentDB, you must:

Have an Azure account. You can get a free Azure account if you don't have one already.

Create a DocumentDB account.

You can create a DocumentDB account using either the Azure portal, Azure Resource Manager templates, or

Azure command-line interface (CLI). This article shows how to create a DocumentDB account using the Azure

portal. To create an account using Azure Resource Manager or Azure CLI, see Automate DocumentDB database

account creation.

Are you new to DocumentDB? Watch this four-minute video by Scott Hanselman to see how to complete the

most common tasks in the online portal.

1. Sign in to the Azure portal.

2. In the Jumpbar, click NewNew , click DatabasesDatabases , and then click DocumentDB (NoSQL)DocumentDB (NoSQL) .

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-create-account.md
https://github.com/mimig1
https://github.com/v-thepet
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/v-aljenk
https://github.com/JennieHubbard
https://github.com/rmca14
https://github.com/deneha
https://azure.microsoft.com/free
https://azure.microsoft.com/documentation/videos/create-documentdb-on-azure/
https://portal.azure.com/

3. In the New accountNew account blade, specify the desired configuration for the DocumentDB account.

In the IDID box, enter a name to identify the DocumentDB account. When the IDID is validated, a green

check mark appears in the IDID box. The IDID value becomes the host name within the URI. The IDID may

contain only lowercase letters, numbers, and the '-' character, and must be between 3 and 50

characters. Note that documents.azure.com is appended to the endpoint name you choose, the result

of which becomes your DocumentDB account endpoint.

For Subscr iptionSubscr iption , select the Azure subscription that you want to use for the DocumentDB account. If

your account has only one subscription, that account is selected by default.

In Resource GroupResource Group, select or create a resource group for your DocumentDB account. By default, a

new resource group is created. For more information, see Using the Azure portal to manage your

Azure resources.

Use LocationLocation to specify the geographic location in which to host your DocumentDB account.

In the NoSQL APINoSQL API box, select the programming model to use:

DocumentDBDocumentDB: The DocumentDB API is available via .NET, Java, Node.js, Python and JavaScript

SDKs, as well as HTTP REST, and offers programmatic access to all the DocumentDB

functionality.

MongoDBMongoDB: DocumentDB also offers protocol-level support for MongoDBMongoDB APIs. When you

choose the MongoDB API option, you can use existing MongoDB SDKs and tools to talk to

DocumentDB. You can move your existing MongoDB apps to use DocumentDB, with no code

changes needed, and take advantage of a fully managed database as a service, with limitless

scale, global replication, and other capabilities.

4. Once the new DocumentDB account options are configured, click CreateCreate. To check the status of the

deployment, check the Notifications hub.

5. After the DocumentDB account is created, it is ready for use with the default settings. The default

consistency of the DocumentDB account is set to SessionSession . You can adjust the default consistency by

clicking Default ConsistencyDefault Consistency in the resource menu. To learn more about the consistency levels offered

by DocumentDB, see Consistency levels in DocumentDB.

https://msdn.microsoft.com/library/azure/dn781481.aspx
file:///D:/azure-docs-pr/_site/azure/.tmp/azure-portal/resource-group-portal.html

Next steps

Learn more

Now that you have a DocumentDB account, the next step is to create a DocumentDB collection and database.

You can create a new collection and database by using one of the following:

The Azure portal, as described in Create a DocumentDB collection using the Azure portal.

The all-inclusive tutorials, which include sample data: .NET, .NET MVC, Java, Node.js, or Python.

The .NET, Node.js, or Python sample code available in GitHub.

The .NET, .NET Core, Node.js, Java, Python, and REST SDKs.

After creating your database and collection, you need to add documents to the collections.

After you have documents in a collection, you can use DocumentDB SQL to execute queries against your

documents. You can execute queries by using the Query Explorer in the portal, the REST API, or one of the SDKs.

To learn more about DocumentDB, explore these resources:

Learning path for DocumentDB

DocumentDB hierarchical resource model and concepts

https://msdn.microsoft.com/library/azure/mt489072.aspx
https://msdn.microsoft.com/library/azure/dn781481.aspx
https://azure.microsoft.com/documentation/learning-paths/documentdb/

mimig • Theano Petersen • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • carolinacmoravia • Carolyn Gronlund • arramac

• v-aljenk • Jennifer Hubbard • Dene Hager

How to create a DocumentDB collection and
database using the Azure portal
11/15/2016 • 5 min to read • Edit on GitHub

Contributors

To use Microsoft Azure DocumentDB, you must have a DocumentDB account, a database, a collection, and

documents. This topic describes how to create a DocumentDB collection in the Azure portal.

Not sure what a collection is? See What is a DocumentDB collection?

1. In the Azure portal, in the Jumpbar, click DocumentDB (NoSQL)DocumentDB (NoSQL) , and then in the DocumentDBDocumentDB

(NoSQL)(NoSQL) blade, select the account in which to add a collection. If you don't have any accounts listed, you'll

need to create a DocumentDB account.

If DocumentDB (NoSQL)DocumentDB (NoSQL) is not visible in the Jumpbar, click More Serv icesMore Serv ices and then click

DocumentDB (NoSQL)DocumentDB (NoSQL) . If you don't have any accounts listed, you'll need to create a DocumentDB

account.

2. In the DocumentDB accountDocumentDB account blade for the selected account, click Add CollectionAdd Collection .

3. In the Add CollectionAdd Collection blade, in the IDID box, enter the ID for your new collection. Collection names must be

between 1 and 255 characters, and cannot contain / \ # ? or a trailing space. When the name is

validated, a green check mark appears in the ID box.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-create-collection.md
https://github.com/mimig1
https://github.com/v-thepet
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/carolinacmoravia
https://github.com/cjgronlund
https://github.com/arramac
https://github.com/v-aljenk
https://github.com/JennieHubbard
https://github.com/deneha
https://portal.azure.com/

4. By default, Pr icing TierPr icing Tier is set to S tandardStandard so that you can customize the throughput and storage for your

collection. For more information about the pricing tier, see Performance levels in DocumentDB.

6. If you are creating a partitioned collection, select the Partition KeyPartition Key for the collection. Selecting the correct

partition key is important in creating a performant collection. For more information on selecting a partition

key, see Designing for partitioning.

7. In the DatabaseDatabase blade, either create a new database or use an existing one. Database names must be between

1 and 255 characters, and cannot contain / \ # ? or a trailing space. To validate the name, click outside the

text box. When the name is validated, a green check mark appears in the box.

8. Click OKOK at the bottom of the screen to create the new collection.

5. Select a Par titioning modePartitioning mode for the collection, either S ingle PartitionS ingle Partition or Par titionedPartitioned.

A s ingle partitionsingle partition has a reserved storage capacity of 10GB, and can have throughput levels from 400-

10,000 request units/second (RU/s). One RU corresponds to the throughput of a read of a 1KB document.

For more information about request units, see Request units.

A partitioned collectionpartitioned collection can scale to handle an unlimited amount of storage over multiple partitions,

and can have throughput levels starting at 10,100 RU/s. In the portal, the largest storage you can reserve is

250 GB, and the most throughput you can reserve is 250,000 RU/s. To increase either quota, file a request

as described in Request increased DocumentDB account quotas. For more informaiton about partitioned

collections, see Single Partition and Partitioned Collections.

By default, the throughput for a new single partition collection is set to 1000 RU/s with a storage capacity

of 10 GB. For a partitioned collection, the collection throughput is set to 10100 RU/s with a storage

capacity of 250 GB. You can change the throughput and storage for the collection after the collection is

created.

9. The new collection now appears in the CollectionsCollections lens on the Overv iewOverv iew blade.

 What is a DocumentDB collection?

10. Optional:Optional: To modify the throughput of collection in the portal, click ScaleScale on the Resource menu.

A collection is a container of JSON documents and the associated JavaScript application logic. A collection is a

billable entity, where the cost is determined by the provisioned throughput of the collection. Collections can span

one or more partitions/servers and can scale to handle practically unlimited volumes of storage or throughput.

Collections are automatically partitioned into one or more physical servers by DocumentDB. When you create a

collection, you can specify the provisioned throughput in terms of request units per second and a partition key

property. The value of this property will be used by DocumentDB to distribute documents among partitions and

route requests like queries. The partition key value also acts as the transaction boundary for stored procedures

and triggers. Each collection has a reserved amount of throughput specific to that collection, which is not shared

with other collections in the same account. Therefore, you can scale out your application both in terms of storage

and throughput.

Collections are not the same as tables in relational databases. Collections do not enforce schema, in fact

DocumentDB does not enforce any schemas, it's a schema-free database. Therefore you can store different types

of documents with diverse schemas in the same collection. You can choose to use collections to store objects of a

Other ways to create a DocumentDB collection

Troubleshooting

Next steps

single type like you would with tables. The best model depends only on how the data appears together in queries

and transactions.

Collections do not have to be created using the portal, you can also create them using the DocumentDB SDKs and

the REST API.

For a C# code sample, see the C# collection samples.

For a Node.js code sample, see the Node.js collection samples.

For a Python code sample, see Python collection samples.

For a REST API sample, see Create a Collection.

If Add CollectionAdd Collection is disabled in the Azure portal, that means your account is currently disabled, which normally

occurs when all the benefits credits for the month are used.

Now that you have a collection, the next step is to add documents or import documents into the collection. When

it comes to adding documents to a collection, you have a few choices:

You can add documents by using the Document Explorer in the portal.

You can import documents and data by using the DocumentDB Data Migration Tool, which enables you to

import JSON and CSV files, as well as data from SQL Server, MongoDB, Azure Table storage, and other

DocumentDB collections.

Or you can add documents by using one of the DocumentDB SDKs. DocumentDB has .NET, Java, Python,

Node.js, and JavaScript API SDKs. For C# code samples showing how to work with documents by using the

DocumentDB .NET SDK, see the C# document samples. For Node.js code samples showing how to work with

documents by using the DocumentDB Node.js SDK, see the Node.js document samples.

After you have documents in a collection, you can use DocumentDB SQL to execute queries against your

documents by using the Query Explorer in the portal, the REST API, or one of the SDKs.

https://msdn.microsoft.com/library/azure/mt489078.aspx
https://msdn.microsoft.com/library/azure/dn781481.aspx

mimig • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil

How to perform DocumentDB global database
replication using the Azure portal
11/15/2016 • 2 min to read • Edit on GitHub

Contributors

NOTE

Add global database regions

Learn how to use the Azure portal to replicate data in multiple regions for global availability of data in Azure

DocumentDB.

For information about how global database replication works in DocumentDB, see Distribute data globally with

DocumentDB. For information about performing global database replication programmatically, see Developing

with multi-region DocumentDB accounts.

Global distribution of DocumentDB databases is generally available and automatically enabled for any newly created

DocumentDB accounts. We are working to enable global distribution on all existing accounts, but in the interim, if you want

global distribution enabled on your account, please contact support and we’ll enable it for you now.

DocumentDB is available in most Azure regions. After selecting the default consistency level for your database

account, you can associate one or more regions (depending on your choice of default consistency level and global

distribution needs).

1. In the Azure portal, in the Jumpbar, click DocumentDB AccountsDocumentDB Accounts .

2. In the DocumentDB AccountDocumentDB Account blade, select the database account to modify.

3. In the account blade, click Replicate data globallyReplicate data globally from the menu.

4. In the Replicate data globallyReplicate data globally blade, select the regions to add or remove, and then click SaveSave. There is a

cost to adding regions, see the pricing page or the Distribute data globally with DocumentDB article for

more information.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-portal-global-replication.md
https://github.com/mimig1
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://portal.azure.com/?#blade/Microsoft_Azure_Support/HelpAndSupportBlade
https://azure.microsoft.com/en-us/regions/#services
https://portal.azure.com/
https://azure.microsoft.com/pricing/details/documentdb/

Selecting global database regions

Next steps

When configuring two or more regions, it is recommended that regions are selected based on the region pairs

described in the Business continuity and disaster recovery (BCDR): Azure Paired Regions article.

Specifically, when configuring to multiple regions, make sure to select the same number of regions (+/-1 for

odd/even) from each of the paired region columns. For example, if you want to deploy to four US regions, you

select two US regions from the left column and two from the right. So, the following would be an appropriate set:

West US, East US, North Central US, and South Central US.

This guidance is important to follow when only two regions are configured for disaster recovery scenarios. For

more than two regions, following this guidance is good practice, but not critical as long as some of the selected

regions adhere to this pairing.

Learn how to manage the consistency of your globally replicated account by reading Consistency levels in

DocumentDB.

For information about how global database replication works in DocumentDB, see Distribute data globally with

DocumentDB. For information about programmatically replicating data in multiple regions, see Developing with

multi-region DocumentDB accounts.

https://azure.microsoft.com/documentation/articles/best-practices-availability-paired-regions/

Kirill Gavrylyuk • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • mimig • Andrew Hoh • v-aljenk • Stephen Baron

View, edit, create, and upload JSON documents using
DocumentDB Document Explorer
11/15/2016 • 5 min to read • Edit on GitHub

Contributors

Launch Document Explorer

This article provides an overview of the Microsoft Azure DocumentDB Document Explorer, an Azure portal tool

that enables you to view, edit, create, upload, and filter JSON documents with DocumentDB.

Note that Document Explorer is not enabled on DocumentDB accounts with protocol support for MongoDB. This

page will be updated when this feature is enabled.

1. In the Azure portal, in the Jumpbar, click DocumentDB (NoSQL)DocumentDB (NoSQL) . If DocumentDB (NoSQL)DocumentDB (NoSQL) is not visible,

click More Serv icesMore Serv ices and then click DocumentDB (NoSQL)DocumentDB (NoSQL) .

2. Select the account name.

3. In the resource menu, click Document ExplorerDocument Explorer .

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-view-json-document-explorer.md
https://github.com/kirillg
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/mimig1
https://github.com/AndrewHoh
https://github.com/v-aljenk
https://github.com/stephbaron
https://azure.microsoft.com/services/documentdb/

Create a document

Edit a document

In the Document ExplorerDocument Explorer blade, the DatabasesDatabases and CollectionsCollections drop-down lists are pre-populated

depending on the context in which you launched Document Explorer.

1. Launch Document Explorer.

NOTE

2. In the Document ExplorerDocument Explorer blade, click Create DocumentCreate Document.

A minimal JSON snippet is provided in the DocumentDocument blade.

3. In the DocumentDocument blade, type or paste in the content of the JSON document you wish to create, and then

click SaveSave to commit your document to the database and collection specified in the Document ExplorerDocument Explorer

blade.

If you do not provide an "id" property, then Document Explorer automatically adds an id property and generates a

GUID as the id value.

If you already have data from JSON files, MongoDB, SQL Server, CSV files, Azure Table storage, Amazon

DynamoDB, HBase, or from other DocumentDB collections, you can use DocumentDB's data migration tool

to quickly import your data.

1. Launch Document Explorer.

2. To edit an existing document, select it in the Document ExplorerDocument Explorer blade, edit the document in the

DocumentDocument blade, and then click SaveSave.

Delete a document

Work with JSON documents

If you're editing a document and decide that you want to discard the current set of edits, simply click

DiscardDiscard in the DocumentDocument blade, confirm the discard action, and the previous state of the document is

reloaded.

1. Launch Document Explorer.

2. Select the document in Document ExplorerDocument Explorer , click DeleteDelete , and then confirm the delete. After confirming,

the document is immediately removed from the Document Explorer list.

Document Explorer validates that any new or edited document contains valid JSON. You can even view JSON

errors by hovering over the incorrect section to get details about the validation error.

NOTE

Additionally, Document Explorer prevents you from saving a document with invalid JSON content.

Finally, Document Explorer allows you to easily view the system properties of the currently loaded document by

clicking the PropertiesProperties command.

The timestamp (_ts) property is internally represented as epoch time, but Document Explorer displays the value in a human

readable GMT format.

Filter documents

Document Explorer supports a number of navigation options and advanced settings.

By default, Document Explorer loads up to the first 100 documents in the selected collection, by their created date

from earliest to latest. You can load additional documents (in batches of 100) by selecting the Load moreLoad more option

at the bottom of the Document Explorer blade. You can choose which documents to load through the F ilterF ilter

command.

1. Launch Document Explorer.

2. At the top of the Document ExplorerDocument Explorer blade, click F i lterF ilter .

3. The filter settings appear below the command bar. In the filter settings, provide a WHERE clause and/or an

ORDER BY clause, and then click F i lterF ilter .

Document Explorer automatically refreshes the results with documents matching the filter query. Read

more about the DocumentDB SQL grammar in the SQL query and SQL syntax article or print a copy of the

SQL query cheat sheet.

The DatabaseDatabase and CollectionCollection drop-down list boxes can be used to easily change the collection from which

documents are currently being viewed without having to close and re-launch Document Explorer.

Document Explorer also supports filtering the currently loaded set of documents by their id property.

Simply type in the Documents Filter by id box.

The results in the Document Explorer list are filtered based on your supplied criteria.

 Bulk add documents

IMPORTANT

The Document Explorer filter functionality only filters from the currentlycurrently loaded set of documents and does not

perform a query against the currently selected collection.

4. To refresh the list of documents loaded by Document Explorer, click RefreshRefresh at the top of the blade.

Document Explorer supports bulk ingestion of one or more existing JSON documents, up to 100 JSON files per

upload operation.

1. Launch Document Explorer.

2. To start the upload process, click Upload DocumentUpload Document.

The Upload DocumentUpload Document blade opens.

3. Click the browse button to open a file explorer window, select one or more JSON documents to upload, and

then click OpenOpen .

NOTE

Document Explorer currently supports up to 100 JSON documents per individual upload operation.

4. Once you're satisfied with your selection, click the UploadUpload button. The documents are automatically added

to the Document Explorer grid and the upload results are displayed as the operation progresses. Import

failures are reported for individual files.

Work with JSON documents outside the portal

Troubleshoot

Next steps

5. Once the operation is complete, you can select up to another 100 documents to upload.

The Document Explorer in the Azure portal is just one way to work with documents in DocumentDB. You can also

work with documents using the REST API or the client SDKs. For example code, see the .NET SDK document

examples and the Node.js SDK document examples.

If you need to import or migrate files from another source (JSON files, MongoDB, SQL Server, CSV files, Azure

Table storage, Amazon DynamoDB, or HBase), you can use the DocumentDB data migration tool to quickly import

your data to DocumentDB.

SymptomSymptom : Document Explorer returns No documents foundNo documents found.

SolutionSolution : Ensure that you have selected the correct subscription, database and collection in which the documents

were inserted. Also, check to ensure that you are operating within your throughput quotas. If you are operating at

your maximum throughput level and getting throttled, lower application usage to operate under the maximum

throughput quota for the collection.

ExplanationExplanation : The portal is an application like any other, making calls to your DocumentDB database and

collection. If your requests are currently being throttled due to calls being made from a separate application, the

portal may also be throttled, causing resources not to appear in the portal. To resolve the issue, address the cause

of the high throughput usage, and then refresh the portal blade. Information on how to measure and lower

throughput usage can be found in the Throughput section of the Performance tips article.

To learn more about the DocumentDB SQL grammar supported in Document Explorer, see the SQL query and SQL

syntax article or print out the SQL query cheat sheet.

The Learning path is also a useful resource to guide you as you learn more about DocumentDB.

https://msdn.microsoft.com/library/azure/mt489082.aspx
https://azure.microsoft.com/documentation/learning-paths/documentdb/

Kirill Gavrylyuk • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • mimig • Andrew Hoh • v-aljenk • pcw3187 • Stephen Baron

• Dene Hager

Write, edit, and run SQL queries for DocumentDB
using Query Explorer
11/15/2016 • 2 min to read • Edit on GitHub

Contributors

This article provides an overview of the Microsoft Azure DocumentDB Query Explorer, an Azure portal tool that

enables you to write, edit, and run SQL queries against a DocumentDB collection.

1. In the Azure portal, in the Jumpbar, click DocumentDB (NoSQL)DocumentDB (NoSQL) . If DocumentDB (NoSQL)DocumentDB (NoSQL) is not visible,

click More Serv icesMore Serv ices and then click DocumentDB (NoSQL)DocumentDB (NoSQL) .

2. In the resource menu, click Query ExplorerQuery Explorer .

3. In the Query ExplorerQuery Explorer blade, select the DatabasesDatabases and CollectionsCollections to query from the drop down lists,

and type the query to run.

The DatabasesDatabases and CollectionsCollections drop-down lists are pre-populated depending on the context in which you

launch Query Explorer.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-query-collections-query-explorer.md
https://github.com/kirillg
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/mimig1
https://github.com/AndrewHoh
https://github.com/v-aljenk
https://github.com/pcw3187
https://github.com/stephbaron
https://github.com/deneha
https://azure.microsoft.com/services/documentdb/

Work with results

A default query of SELECT TOP 100 * FROM c is provided. You can accept the default query or construct your

own query using the SQL query language described in the SQL query cheat sheet or the SQL query and

SQL syntax article.

Click Run queryRun query to view the results.

4. The ResultsResults blade displays the output of the query.

By default, Query Explorer returns results in sets of 100. If your query produces more than 100 results, simply use

the Next pageNext page and Prev ious pagePrev ious page commands to navigate through the result set.

For successful queries, the InformationInformation pane contains metrics such as the request charge, the number of round

trips the query made, the set of results currently being shown, and whether there are more results, which can then

be accessed via the Next pageNext page command, as mentioned previously.

Use multiple queries

If you're using multiple queries and want to quickly switch between them, you can enter all the queries in the

query text box of the Query ExplorerQuery Explorer blade, then highlight the one you want to run, and then click Run queryRun query to

view the results.

Add queries from a file into the SQL query editor

You can load the contents of an existing file using the Load F ileLoad F ile command.

 Troubleshoot

If a query completes with errors, Query Explorer displays a list of errors that can help with troubleshooting efforts.

Run DocumentDB SQL queries outside the portal

Next steps

The Query Explorer in the Azure portal is just one way to run SQL queries against DocumentDB. You can also run

SQL queries using the REST API or the client SDKs. For more information about using these other methods, see

Executing SQL queries

To learn more about the DocumentDB SQL grammar supported in Query Explorer, see the SQL query and SQL

syntax article or print out the SQL query cheat sheet. You may also enjoy experimenting with the Query

Playground where you can test out queries online using a sample dataset.

https://msdn.microsoft.com/library/azure/dn781481.aspx
https://www.documentdb.com/sql/demo

Kirill Gavrylyuk • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • mimig • Armando Trejo Oliver • Andrew Hoh • Kirat Pandya

• v-aljenk • Jennifer Hubbard • Stephen Baron

How to manage a DocumentDB account
11/15/2016 • 3 min to read • Edit on GitHub

Contributors

Manage DocumentDB consistency settings

To specify the default consistency for a DocumentDB account

View, copy, and regenerate access keys

Learn how to set global consistency, work with keys, and delete a DocumentDB account in the Azure portal.

Selecting the right consistency level depends on the semantics of your application. You should familiarize yourself

with the available consistency levels in DocumentDB by reading Using consistency levels to maximize availability

and performance in DocumentDB. DocumentDB provides consistency, availability, and performance guarantees, at

every consistency level available for your database account. Configuring your database account with a consistency

level of Strong requires that your data is confined to a single Azure region and not globally available. On the other

hand, the relaxed consistency levels - bounded staleness, session or eventual enable you to associate any number

of Azure regions with your database account. The following simple steps show you how to select the default

consistency level for your database account.

1. In the Azure portal, access your DocumentDB account.

2. In the account blade, click Default consistencyDefault consistency .

3. In the Default ConsistencyDefault Consistency blade, select the new consistency level and click SaveSave.

When you create a DocumentDB account, the service generates two master access keys that can be used for

authentication when the DocumentDB account is accessed. By providing two access keys, DocumentDB enables

you to regenerate the keys with no interruption to your DocumentDB account.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-manage-account.md
https://github.com/kirillg
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/mimig1
https://github.com/ato9000
https://github.com/AndrewHoh
https://github.com/kiratp
https://github.com/v-aljenk
https://github.com/JennieHubbard
https://github.com/stephbaron
https://azure.microsoft.com/documentation/articles/documentdb-consistency-levels/
https://portal.azure.com/

NOTE

Copy an access key in the Azure Portal

Regenerate access keys

WARNING

In the Azure portal, access the KeysKeys blade from the resource menu on the DocumentDB accountDocumentDB account blade to view,

copy, and regenerate the access keys that are used to access your DocumentDB account.

The KeysKeys blade also includes primary and secondary connection strings that can be used to connect to your account from

the Data Migration Tool.

Read-only keys are also available on this blade. Reads and queries are read-only operations, while creates, deletes,

and replaces are not.

On the KeysKeys blade, click the CopyCopy button to the right of the key you wish to copy.

You should change the access keys to your DocumentDB account periodically to help keep your connections more

secure. Two access keys are assigned to enable you to maintain connections to the DocumentDB account using

one access key while you regenerate the other access key.

Regenerating your access keys affects any applications that are dependent on the current key. All clients that use the access

key to access the DocumentDB account must be updated to use the new key.

If you have applications or cloud services using the DocumentDB account, you will lose the connections if you

regenerate keys, unless you roll your keys. The following steps outline the process involved in rolling your keys.

1. Update the access key in your application code to reference the secondary access key of the DocumentDB

account.

2. Regenerate the primary access key for your DocumentDB account. In the Azure Portal, access your

https://portal.azure.com/
https://portal.azure.com/

NOTE

Get the connection string

Delete a DocumentDB account

DocumentDB account.

3. In the DocumentDB AccountDocumentDB Account blade, click KeysKeys .

4. On the KeysKeys blade, click the regenerate button, then click OkOk to confirm that you want to generate a new key.

5. Once you have verified that the new key is available for use (approximately 5 minutes after regeneration),

update the access key in your application code to reference the new primary access key.

6. Regenerate the secondary access key.

It can take several minutes before a newly generated key can be used to access your DocumentDB account.

To retrieve your connection string, do the following:

1. In the Azure portal, access your DocumentDB account.

2. In the resource menu, click KeysKeys .

3. Click the CopyCopy button next to the Pr imary Connection S tr ingPr imary Connection S tr ing or Secondary Connection S tr ingSecondary Connection S tr ing box.

If you are using the connection string in the DocumentDB Database Migration Tool, append the database name to

the end of the connection string. AccountEndpoint=< >;AccountKey=< >;Database=< > .

To remove a DocumentDB account from the Azure Portal that you are no longer using, use the Delete AccountDelete Account

command on the DocumentDB accountDocumentDB account blade.

1. In the Azure portal, access the DocumentDB account you wish to delete.

2. On the DocumentDB accountDocumentDB account blade, click MoreMore, and then click Delete AccountDelete Account. Or, right-click the name of

the database, and click Delete AccountDelete Account.

3. On the resulting confirmation blade, type the DocumentDB account name to confirm that you want to delete

the account.

4. Click the DeleteDelete button.

https://portal.azure.com
https://portal.azure.com/

 Next steps

Learn how to get started with your DocumentDB account.

To learn more about DocumentDB, see the Azure DocumentDB documentation on azure.com.

http://go.microsoft.com/fwlink/p/?LinkId=402364
http://go.microsoft.com/fwlink/?LinkID=402319&clcid=0x409

mimig • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • Rob Boucher • v-aljenk • Jennifer Hubbard

Monitor DocumentDB requests, usage, and storage
11/15/2016 • 4 min to read • Edit on GitHub

Contributors

View performance metrics on the Metrics blade

View performance metrics on the account blade

You can monitor your Azure DocumentDB accounts in the Azure portal. For each DocumentDB account, both

performance metrics, such as requests and server errors, and usage metrics, such as storage consumption, are

available.

Metrics can be reviewed on the Account blade or on the new Metrics blade.

1. In a new window, open the Azure portal, click More Serv icesMore Serv ices , click DocumentDB (NoSQL)DocumentDB (NoSQL) , and then click

the name of the DocumentDB account for which you would like to view performance metrics.

2. In the resource menu, click Metr icsMetr ics .

The Metrics blade opens, and you can select the collection to review. You can review Availability, Requests,

Throughput, and Storage metrics and compare them to the DocumentDB SLAs.

1. In a new window, open the Azure portal, click More Serv icesMore Serv ices , click DocumentDB (NoSQL)DocumentDB (NoSQL) , and then click

the name of the DocumentDB account for which you would like to view performance metrics.

3. Clicking on the RequestsRequests or S torageStorage tile opens a detailed Metr icMetr ic blade.

2. The Monitor ingMonitor ing lens displays the following tiles by default:

Total requests for the current day.

Storage used.

If your table displays No data availableNo data available and you believe there is data in your database, see the

Troubleshooting section.

4. The Metr icMetr ic blade shows you details about the metrics you have selected. At the top of the blade is a graph

of requests charted hourly, and below that is table that shows aggregation values for throttled and total

requests. The metric blade also shows the list of alerts which have been defined, filtered to the metrics that

appear on the current metric blade (this way, if you have a number of alerts, you'll only see the relevant

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-monitor-accounts.md
https://github.com/mimig1
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/rboucher
https://github.com/v-aljenk
https://github.com/JennieHubbard
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/

Customize performance metric views in the portal

ones presented here).

1. To customize the metrics that display in a particular chart, click the chart to open it in the Metr icMetr ic blade, and

then click Edit chartEdit chart.

2. On the Edit ChartEdit Chart blade, there are options to modify the metrics that display in the chart, as well as their time

range.

3. To change the metrics displayed in the part, simply select or clear the available performance metrics, and then

click OKOK at the bottom of the blade.

4. To change the time range, choose a different range (for example, CustomCustom), and then click OKOK at the bottom

of the blade.

Create side-by-side charts in the portal

The Azure Portal allows you to create side-by-side metric charts.

1. First, right-click on the chart you want to copy and select CustomizeCustomize.

2. Click CloneClone on the menu to copy the part and then click Done customizingDone customizing.

Set up alerts in the portal

You may now treat this part as any other metric part, customizing the metrics and time range displayed in the

part. By doing this, you can see two different metrics chart side-by-side at the same time.

1. In the Azure portal, click More Serv icesMore Serv ices , click DocumentDB (NoSQL)DocumentDB (NoSQL) , and then click the name of the

DocumentDB account for which you would like to setup performance metric alerts.

2. In the resource menu, click Aler t RulesAler t Rules to open the Alert rules blade.

https://portal.azure.com/

3. In the Aler t rulesAler t rules blade, click Add aler tAdd aler t .

4. In the Add an aler t ruleAdd an aler t rule blade, specify:

The name of the alert rule you are setting up.

A description of the new alert rule.

The metric for the alert rule.

The condition, threshold, and period that determine when the alert activates. For example, a server error

count greater than 5 over the last 15 minutes.

Whether the service administrator and coadministrators are emailed when the alert fires.

Additional email addresses for alert notifications.

Monitor DocumentDB programatically

https://management.azure.com/subscriptions/{SubscriptionId}/resourceGroups/{ResourceGroup}/providers/Microsoft.

DocumentDb/databaseAccounts/{DocumentDBAccountName}/metricDefinitions?api-version=2015-04-08

The account level metrics available in the portal, such as account storage usage and total requests, are not

available via the DocumentDB APIs. However, you can retrieve usage data at the collection level by using the

DocumentDB APIs. To retrieve collection level data, do the following:

To use the REST API, perform a GET on the collection. The quota and usage information for the collection is

returned in the x-ms-resource-quota and x-ms-resource-usage headers in the response.

To use the .NET SDK, use the DocumentClient.ReadDocumentCollectionAsync method, which returns a

ResourceResponse that contains a number of usage properties such as CollectionS izeUsageCollectionS izeUsage,

DatabaseUsageDatabaseUsage, DocumentUsageDocumentUsage, and more.

To access additional metrics, use the Azure Monitor SDK. Available metric definitions can be retrieved by calling:

Queries to retrieve individual metrics use the following format:

https://msdn.microsoft.com/library/mt489073.aspx
https://msdn.microsoft.com/library/microsoft.azure.documents.client.documentclient.readdocumentcollectionasync.aspx
https://msdn.microsoft.com/library/dn799209.aspx
https://www.nuget.org/packages/Microsoft.Azure.Insights

https://management.azure.com/subscriptions/{SubecriptionId}/resourceGroups/{ResourceGroup}/providers/Microsoft.

DocumentDb/databaseAccounts/{DocumentDBAccountName}/metrics?api-version=2015-04-

08&$filter=%28name.value%20eq%20%27Total%20Requests%27%29%20and%20timeGrain%20eq%20duration%27PT5M%27%20and%20s

tartTime%20eq%202016-06-03T03%3A26%3A00.0000000Z%20and%20endTime%20eq%202016-06-10T03%3A26%3A00.0000000Z

Troubleshooting

Edit a tile to refresh current data

For more information, see Retrieving Resource Metrics via the Azure Monitor REST API. Note that "Azure Inights"

was renamed "Azure Monitor". This blog entry refers to the older name.

If your monitoring tiles display the No data availableNo data available message, and you recently made requests or added data

to the database, you can edit the tile to reflect the recent usage.

1. To customize the metrics that display in a particular part, click the chart to open the Metr icMetr ic blade, and then

click Edit ChartEdit Chart.

2. On the Edit ChartEdit Chart blade, in the Time RangeTime Range section, click past hourpast hour , and then click OKOK.

3. Your tile should now refresh showing your current data and usage.

https://blogs.msdn.microsoft.com/cloud_solution_architect/2016/02/23/retrieving-resource-metrics-via-the-azure-insights-api/

Next steps

To learn more about DocumentDB capacity, see Manage DocumentDB capacity.

Kirill Gavrylyuk • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • mimig • Andrew Hoh • v-aljenk • Stephen Baron • Dene Hager

Create and run stored procedures, triggers, and user-
defined functions using the DocumentDB Script
Explorer
11/15/2016 • 3 min to read • Edit on GitHub

Contributors

Launch Script Explorer

This article provides an overview of the Microsoft Azure DocumentDB Script Explorer, which is a JavaScript editor

in the Azure portal that enables you to view and execute DocumentDB server-side programming artifacts including

stored procedures, triggers, and user-defined functions. Read more about DocumentDB server-side programming

in the Stored procedures, database triggers, and UDFs article.

1. In the Azure portal, in the Jumpbar, click DocumentDB (NoSQL)DocumentDB (NoSQL) . If DocumentDB AccountsDocumentDB Accounts is not visible,

click More Serv icesMore Serv ices and then click DocumentDB (NoSQL)DocumentDB (NoSQL) .

2. In the resources menu, click Scr ipt ExplorerScr ipt Explorer .

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-view-scripts.md
https://github.com/kirillg
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/mimig1
https://github.com/AndrewHoh
https://github.com/v-aljenk
https://github.com/stephbaron
https://github.com/deneha
https://azure.microsoft.com/services/documentdb/

3. Use the DatabaseDatabase and CollectionCollection drop-down list boxes to easily change the collection from which scripts are

currently being viewed without having to close and re-launch Script Explorer.

The DatabaseDatabase and CollectionCollection drop-down list boxes are pre-populated depending on the context in which

you launch Script Explorer. For example, if you launch from a database blade, then the current database is

pre-populated. If you launch from a collection blade, then the current collection is pre-populated.

4. Script Explorer also supports filtering the currently loaded set of scripts by their id property. Simply type in

the filter box and the results in the Script Explorer list are filtered based on your supplied criteria.

[AZURE.IMPORTANT] The Script Explorer filter functionality only filters from the currentlycurrently loaded set of

scripts and does not automatically refresh the currently selected collection.

5. To refresh the list of scripts loaded by Script Explorer, simply click the RefreshRefresh command at the top of the

blade.

Create, view, and edit stored procedures, triggers, and user-defined
functions

Script Explorer allows you to easily perform CRUD operations on DocumentDB server-side programming artifacts.

To create a script, simply click on the applicable create command within script explorer, provide an id, enter

the contents of the script, and click SaveSave.

When creating a trigger, you must also specify the trigger type and trigger operation

To view a script, simply click the script in which you're interested.

To edit a script, simply make the desired changes in the JavaScript editor and click SaveSave.

To discard any pending changes to a script, simply click the DiscardDiscard command.

Script Explorer also allows you to easily view the system properties of the currently loaded script by clicking

the PropertiesProperties command.

NOTE

The timestamp (_ts) property is internally represented as epoch time, but Script Explorer displays the value in a

human readable GMT format.

To delete a script, select it in Script Explorer and click the DeleteDelete command.

Confirm the delete action by clicking YesYes or cancel the delete action by clicking NoNo.

Execute a stored procedure

WARNING

Executing stored procedures in Script Explorer is not yet supported for server side partitioned collections. For more

information, visit Partitioning and Scaling in DocumentDB.

Script Explorer allows you to execute server-side stored procedures from the Azure portal.

When opening a new create stored procedure blade, a default script (prefix) will already be provided. In

order to run the prefix script or your own script, add an id and inputs. For stored procedures that accept

multiple parameters, all inputs must be within an array (e.g. ["foo", "bar"]).

NOTE

To execute a stored procedure, simply click on the Save & ExecuteSave & Execute command within script editor pane.

The Save & ExecuteSave & Execute command will save your stored procedure before executing, which means it will overwrite the

previously saved version of the stored procedure.

Successful stored procedure executions will have a Successfully saved and executed the stored procedure

status and the returned results will be populated in the Results pane.

If the execution encounters an error, the error will be populated in the Results pane.

Work with scripts outside the portal

Next steps

The Script Explorer in the Azure portal is just one way to work with stored procedures, triggers, and user-defined

functions in DocumentDB. You can also work with scripts using the the REST API and the client SDKs. The REST API

documentation includes samples for working with stored procedures using REST, user defined functions using

REST, and triggers using REST. Samples are also available showing how to work with scripts using C# and work

with scripts using Node.js.

Learn more about DocumentDB server-side programming in the Stored procedures, database triggers, and UDFs

article.

The Learning path is also a useful resource to guide you as you learn more about DocumentDB.

https://msdn.microsoft.com/library/azure/mt489092.aspx
https://msdn.microsoft.com/library/azure/dn781481.aspx
https://msdn.microsoft.com/library/azure/mt489116.aspx
https://azure.microsoft.com/documentation/learning-paths/documentdb/

mimig • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil

Azure DocumentDB portal troubleshooting tips
11/15/2016 • 2 min to read • Edit on GitHub

Contributors

Resources are missing

Pages or blades won't load

Add Collection button is disabled

This article describes how to resolve DocumentDB issues in the Azure portal.

SymptomSymptom : Databases or collections are missing from your portal blades.

SolutionSolution : Lower application usage to operate under the maximum throughput quota for the collection.

ExplanationExplanation : The portal is an application like any other, making calls to your DocumentDB database and collection.

If your requests are currently being throttled due to calls being made from a separate application, the portal may

also be throttled, causing resources not to appear in the portal. To resolve the issue, address the cause of the high

throughput usage, and then refresh the portal blade. Information on how to measure and lower throughput usage

can be found in the Throughput section of the Performance tips article.

SymptomSymptom : Pages and blades in the portal do not display.

SolutionSolution : Lower application usage to operate under the maximum throughput quota for the collection.

ExplanationExplanation : The portal is an application like any other, making calls to your DocumentDB database and collection.

If your requests are currently being throttled due to calls being made from a separate application, the portal may

also be throttled, causing resources not to appear in the portal. To resolve the issue, address the cause of the high

throughput usage, and then refresh the portal blade. Information on how to measure and lower throughput usage

can be found in the Throughput section of the Performance tips article.

SymptomSymptom : On the Database blade, the Add CollectionAdd Collection button is disabled.

ExplanationExplanation : If your Azure subscription is associated with benefit credits, such as free credits offered from an

MSDN subscription, and you have used all of your credits for the month, you are unable to create any additional

collections in DocumentDB.

SolutionSolution : Remove the spending limit from your account.

1. In the Azure portal, in the Jumpbar, click Subscr iptionsSubscr iptions , click the subscription associated with the DocumentDB

database, and then in the Subscr iptionSubscr iption blade, click ManageManage.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-portal-troubleshooting.md
https://github.com/mimig1
https://github.com/kiwhit
https://github.com/tysonn

Query Explorer completes with errors

No data available in monitoring tiles

No documents returned in Document Explorer

Next steps

2. In the new browser window, you'll see that you have no credits remaining. Click the Remove spending l im itRemove spending l im it

button to remove the spending for only the current billing period or indefinitely. Then complete the wizard to

add or confirm your credit card information.

See Troubleshoot Query Explorer.

See Troubleshoot monitoring tiles.

See Troubleshooting Document Explorer.

If you are still experiencing issues in the portal, please email askdocdb@microsoft.com for assistance, or file a

support request in the portal by clicking BrowseBrowse, Help + supportHelp + support, and then clicking Create support requestCreate support request.

mailto:askdocdb@microsoft.com

Han Wong • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • mimig • Stephen Baron • Ryan CrawCour • v-aljenk

Deploy DocumentDB and Azure App Service Web
Apps using an Azure Resource Manager Template
11/15/2016 • 6 min to read • Edit on GitHub

Contributors

Prerequisites

TIP

Step 1: Download the template files

Step 2: Deploy the DocumentDB account, App Service web app and
demo application sample

This tutorial shows you how to use an Azure Resource Manager template to deploy and integrate Microsoft Azure

DocumentDB, an Azure App Service web app, and a sample web application.

Using Azure Resource Manager templates, you can easily automate the deployment and configuration of your

Azure resources. This tutorial shows how to deploy a web application and automatically configure DocumentDB

account connection information.

After completing this tutorial, you will be able to answer the following questions:

How can I use an Azure Resource Manager template to deploy and integrate a DocumentDB account and a web

app in Azure App Service?

How can I use an Azure Resource Manager template to deploy and integrate a DocumentDB account, a web app

in App Service Web Apps, and a Webdeploy application?

While this tutorial does not assume prior experience with Azure Resource Manager templates or JSON, should you wish to

modify the referenced templates or deployment options, then knowledge of each of these areas will be required.

Before following the instructions in this tutorial, ensure that you have the following:

An Azure subscription. Azure is a subscription-based platform. For more information about obtaining a

subscription, see Purchase Options, Member Offers, or Free Trial.

Let's start by downloading the template files we will use in this tutorial.

1. Download the Create a DocumentDB account, Web Apps, and deploy a demo application sample template to a

local folder (e.g. C:\DocumentDBTemplates). This template will deploy a DocumentDB account, an App Service

web app, and a web application. It will also automatically configure the web application to connect to the

DocumentDB account.

2. Download the Create a DocumentDB account and Web Apps sample template to a local folder (e.g.

C:\DocumentDBTemplates). This template will deploy a DocumentDB account, an App Service web app, and will

modify the site's application settings to easily surface DocumentDB connection information, but does not

include a web application.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-create-documentdb-website.md
https://github.com/h0n
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/mimig1
https://github.com/stephbaron
https://github.com/ryancrawcour
https://github.com/v-aljenk
https://azure.microsoft.com/services/documentdb/
http://go.microsoft.com/fwlink/?LinkId=529714
https://azure.microsoft.com/pricing/purchase-options/
https://azure.microsoft.com/pricing/member-offers/
https://azure.microsoft.com/pricing/free-trial/
https://portalcontent.blob.core.windows.net/samples/DocDBWebsiteTodo.json
https://portalcontent.blob.core.windows.net/samples/DocDBWebSite.json

TIP

Now let's deploy our first template.

The template does not validate that the web app name and DocumentDB account name entered below are a) valid and b)

available. It is highly recommended that you verify the availability of the names you plan to supply prior to submitting the

deployment.

1. Login to the Azure Portal, click New and search for "Template deployment".

2. Select the Template deployment item and click CreateCreate

https://portal.azure.com

3. Click Edit templateEdit template , paste the contents of the DocDBWebsiteTodo.json template file, and click SaveSave.

4. Click Edit parametersEdit parameters , provide values for each of the mandatory parameters, and click OKOK. The parameters

are as follows:

a. SITENAME: Specifies the App Service web app name and is used to construct the URL that you will use to

access the web app (e.g. if you specify "mydemodocdbwebapp", then the URL by which you will access

the web app will be mydemodocdbwebapp.azurewebsites.net).

b. HOSTINGPLANNAME: Specifies the name of App Service hosting plan to create.

c. LOCATION: Specifies the Azure location in which to create the DocumentDB and web app resources.

d. DATABASEACCOUNTNAME: Specifies the name of the DocumentDB account to create.

5. Choose an existing Resource group or provide a name to make a new resource group, and choose a location for

the resource group.

6. Click Rev iew legal termsRev iew legal terms , PurchasePurchase, and then click CreateCreate to begin the deployment. Select Pin toPin to

dashboarddashboard so the resulting deployment is easily visible on your Azure portal home page.

7. When the deployment finishes, the Resource group blade will open.

8. To use the application, simply navigate to the web app URL (in the example above, the URL would be

http://mydemodocdbwebapp.azurewebsites.net). You'll see the following web application:

http://mydemodocdbwebapp.azurewebsites.net

9. Go ahead and create a couple of tasks in the web app and then return to the Resource group blade in the Azure

portal. Click the DocumentDB account resource in the Resources list and then click Query ExplorerQuery Explorer .

11. Feel free to explore the DocumentDB portal experience or modify the sample Todo application. When you're

ready, let's deploy another template.

10. Run the default query, "SELECT * FROM c" and inspect the results. Notice that the query has retrieved the

JSON representation of the todo items you created in step 7 above. Feel free to experiment with queries; for

example, try running SELECT * FROM c WHERE c.isComplete = true to return all todo items which have been

marked as complete.

Step 3: Deploy the Document account and web app sample

TIP

Now let's deploy our second template. This template is useful to show how you can inject DocumentDB connection

information such as account endpoint and master key into a web app as application settings or as a custom

connection string. For example, perhaps you have your own web application that you would like to deploy with a

DocumentDB account and have the connection information automatically populated during deployment.

The template does not validate that the web app name and DocumentDB account name entered below are a) valid and b)

available. It is highly recommended that you verify the availability of the names you plan to supply prior to submitting the

deployment.

1. In the Azure Portal, click New and search for "Template deployment".

2. Select the Template deployment item and click CreateCreate

https://portal.azure.com

3. Click Edit templateEdit template , paste the contents of the DocDBWebSite.json template file, and click SaveSave.

4. Click Edit parametersEdit parameters , provide values for each of the mandatory parameters, and click OKOK. The parameters

are as follows:

a. SITENAME: Specifies the App Service web app name and is used to construct the URL that you will use to

access the web app (e.g. if you specify "mydemodocdbwebapp", then the URL by which you will access

the web app will be mydemodocdbwebapp.azurewebsites.net).

b. HOSTINGPLANNAME: Specifies the name of App Service hosting plan to create.

c. LOCATION: Specifies the Azure location in which to create the DocumentDB and web app resources.

d. DATABASEACCOUNTNAME: Specifies the name of the DocumentDB account to create.

5. Choose an existing Resource group or provide a name to make a new resource group, and choose a location for

the resource group.

6. Click Rev iew legal termsRev iew legal terms , PurchasePurchase, and then click CreateCreate to begin the deployment. Select Pin toPin to

dashboarddashboard so the resulting deployment is easily visible on your Azure portal home page.

7. When the deployment finishes, the Resource group blade will open.

8. Click the Web App resource in the Resources list and then click Application settingsApplication settings

9. Note how there are application settings present for the DocumentDB endpoint and each of the DocumentDB

master keys.

10. Feel free to continue exploring the Azure Portal, or follow one of our DocumentDB samples to create your own

DocumentDB application.

http://go.microsoft.com/fwlink/?LinkID=402386

Next steps

What's changed

NOTE

Congratulations! You've deployed DocumentDB, App Service web app and a sample web application using Azure

Resource Manager templates.

To learn more about DocumentDB, click here.

To learn more about Azure App Service Web apps, click here.

To learn more about Azure Resource Manager templates, click here.

For a guide to the change from Websites to App Service see: Azure App Service and Its Impact on Existing Azure

Services

For a guide to the change of the old portal to the new portal see: Reference for navigating the Azure Classic

Portal

If you want to get started with Azure App Service before signing up for an Azure account, go to Try App Service, where you

can immediately create a short-lived starter web app in App Service. No credit cards required; no commitments.

http://azure.com/docdb
http://go.microsoft.com/fwlink/?LinkId=325362
https://msdn.microsoft.com/library/azure/dn790549.aspx
http://go.microsoft.com/fwlink/?LinkId=529714
http://go.microsoft.com/fwlink/?LinkId=529715
http://go.microsoft.com/fwlink/?LinkId=523751

Howard S. Edidin • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • ShawnJackson • Jeff Hollan

Logging and error handling in Logic Apps
11/15/2016 • 8 min to read • Edit on GitHub

Contributors

NOTE

Overview of the use case and scenario

How we solved the problem

TIP

Creation of the logic app

This article describes how you can extend a logic app to better support exception handling. It is a real-life use case

and our answer to the question of, "Does Logic Apps support exception and error handling?"

The current version of the Logic Apps feature of Microsoft Azure App Service provides a standard template for action

responses. This includes both internal validation and error responses returned from an API app.

The following story is the use case for this article. A well-known healthcare organization engaged us to develop an

Azure solution that would create a patient portal by using Microsoft Dynamics CRM Online. They needed to send

appointment records between the Dynamics CRM Online patient portal and Salesforce. We were asked to use the

HL7 FHIR standard for all patient records.

The project had two major requirements:

A method to log records sent from the Dynamics CRM Online portal

A way to view any errors that occurred within the workflow

You can view a high-level video of the project at the Integration User Group.

We chose Azure DocumentDB as a repository for the log and error records (DocumentDB refers to records as

documents). Because Logic Apps has a standard template for all responses, we would not have to create a custom

schema. We could create an API app to Inser tInser t and QueryQuery for both error and log records. We could also define a

schema for each within the API app.

Another requirement was to purge records after a certain date. DocumentDB has a property called Time to Live

(TTL), which allowed us to set a Time to L iveTime to L ive value for each record or collection. This eliminated the need to

manually delete records in DocumentDB.

The first step is to create the logic app and load it in the designer. In this example, we are using parent-child logic

apps. Let's assume that we have already created the parent and are going to create one child logic app.

Because we are going to be logging the record coming out of Dynamics CRM Online, let's start at the top. We need

to use a Request trigger because the parent logic app triggers this child.

https://github.com/Microsoft/azure-docs/blob/master/articles/app-service-logic/app-service-logic-scenario-error-and-exception-handling.md
https://github.com/HEDIDIN
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/ShawnJackson
https://github.com/jeffhollan
http://www.hl7.org/implement/standards/fhir/
http://www.integrationusergroup.com/do-logic-apps-support-error-handling/
https://azure.microsoft.com/services/documentdb/
https://azure.microsoft.com/blog/documentdb-now-supports-time-to-live-ttl/

IMPORTANT

Logic app trigger

"triggers": {

 "request": {

 "type": "request",

 "kind": "http",

 "inputs": {

 "schema": {

 "properties": {

 "CRMid": {

 "type": "string"

 },

 "recordType": {

 "type": "string"

 },

 "salesforceID": {

 "type": "string"

 },

 "update": {

 "type": "boolean"

 }

 },

 "required": [

 "CRMid",

 "recordType",

 "salesforceID",

 "update"

],

 "type": "object"

 }

 }

 }

 },

Steps

Insert log entry designer view

To complete this tutorial, you will need to create a DocumentDB database and two collections (Logging and Errors).

We are using a Request trigger as shown in the following example.

We need to log the source (request) of the patient record from the Dynamics CRM Online portal.

1. We need to get a new appointment record from Dynamics CRM Online. The trigger coming from CRM provides

us with the CRM PatentIdCRM PatentId, record typerecord type, New or Updated RecordNew or Updated Record (new or update Boolean value), and

SalesforceIdSalesforceId. The SalesforceIdSalesforceId can be null because it's only used for an update. We will get the CRM record

by using the CRM PatientIDPatientID and the Record TypeRecord Type.

2. Next, we need to add our DocumentDB API app Inser tLogEntryInsertLogEntry operation as shown in the following figures.

Insert error entry designer view

Check for create record failure

Logic app source code

NOTE

Logging

Log entry

"InsertLogEntry": {

 "metadata": {

 "apiDefinitionUrl": "https://.../swagger/docs/v1",

 "swaggerSource": "website"

 },

 "type": "Http",

 "inputs": {

 "body": {

 "date": "@{outputs('Gets_NewPatientRecord')['headers']['Date']}",

 "operation": "New Patient",

 "patientId": "@{triggerBody()['CRMid']}",

 "providerId": "@{triggerBody()['providerID']}",

 "source": "@{outputs('Gets_NewPatientRecord')['headers']}"

 },

 "method": "post",

 "uri": "https://.../api/Log"

 },

 "runAfter": {

 "Gets_NewPatientecord": ["Succeeded"]

 }

}

Log request

 {

 "uri": "https://.../api/Log",

 "method": "post",

 "body": {

 "date": "Fri, 10 Jun 2016 22:31:56 GMT",

 "operation": "New Patient",

 "patientId": "6b115f6d-a7ee-e511-80f5-3863bb2eb2d0",

 "providerId": "",

 "source": "{\"Pragma\":\"no-cache\",\"x-ms-request-id\":\"e750c9a9-bd48-44c4-bbba-1688b6f8a132\",\"OData-

Version\":\"4.0\",\"Cache-Control\":\"no-cache\",\"Date\":\"Fri, 10 Jun 2016 22:31:56 GMT\",\"Set-

Cookie\":\"ARRAffinity=785f4334b5e64d2db0b84edcc1b84f1bf37319679aefce206b51510e56fd9770;Path=/;Domain=127.0.0.1\"

,\"Server\":\"Microsoft-IIS/8.0,Microsoft-HTTPAPI/2.0\",\"X-AspNet-Version\":\"4.0.30319\",\"X-Powered-

By\":\"ASP.NET\",\"Content-Length\":\"1935\",\"Content-Type\":\"application/json; odata.metadata=minimal;

odata.streaming=true\",\"Expires\":\"-1\"}"

 }

 }

Log response

The following are samples only. Because this tutorial is based on an implementation currently in production, the value of a

Source NodeSource Node might not display properties that are related to scheduling an appointment.

The following logic app code sample shows how to handle logging.

This is the logic app source code for inserting a log entry.

This is the log request message posted to the API app.

This is the log response message from the API app.

{

 "statusCode": 200,

 "headers": {

 "Pragma": "no-cache",

 "Cache-Control": "no-cache",

 "Date": "Fri, 10 Jun 2016 22:32:17 GMT",

 "Server": "Microsoft-IIS/8.0",

 "X-AspNet-Version": "4.0.30319",

 "X-Powered-By": "ASP.NET",

 "Content-Length": "964",

 "Content-Type": "application/json; charset=utf-8",

 "Expires": "-1"

 },

 "body": {

 "ttl": 2592000,

 "id": "6b115f6d-a7ee-e511-80f5-3863bb2eb2d0_1465597937",

 "_rid": "XngRAOT6IQEHAAAAAAAAAA==",

 "_self": "dbs/XngRAA==/colls/XngRAOT6IQE=/docs/XngRAOT6IQEHAAAAAAAAAA==/",

 "_ts": 1465597936,

 "_etag": "\"0400fc2f-0000-0000-0000-575b3ff00000\"",

 "patientID": "6b115f6d-a7ee-e511-80f5-3863bb2eb2d0",

 "timestamp": "2016-06-10T22:31:56Z",

 "source": "{\"Pragma\":\"no-cache\",\"x-ms-request-id\":\"e750c9a9-bd48-44c4-bbba-1688b6f8a132\",\"OData-

Version\":\"4.0\",\"Cache-Control\":\"no-cache\",\"Date\":\"Fri, 10 Jun 2016 22:31:56 GMT\",\"Set-

Cookie\":\"ARRAffinity=785f4334b5e64d2db0b84edcc1b84f1bf37319679aefce206b51510e56fd9770;Path=/;Domain=127.0.0.1\"

,\"Server\":\"Microsoft-IIS/8.0,Microsoft-HTTPAPI/2.0\",\"X-AspNet-Version\":\"4.0.30319\",\"X-Powered-

By\":\"ASP.NET\",\"Content-Length\":\"1935\",\"Content-Type\":\"application/json; odata.metadata=minimal;

odata.streaming=true\",\"Expires\":\"-1\"}",

 "operation": "New Patient",

 "salesforceId": "",

 "expired": false

 }

}

Error handling

Create error record

Now let's look at the error handling steps.

The following Logic Apps code sample shows how you can implement error handling.

This is the Logic Apps source code for creating an error record.

"actions": {

 "CreateErrorRecord": {

 "metadata": {

 "apiDefinitionUrl": "https://.../swagger/docs/v1",

 "swaggerSource": "website"

 },

 "type": "Http",

 "inputs": {

 "body": {

 "action": "New_Patient",

 "isError": true,

 "crmId": "@{triggerBody()['CRMid']}",

 "patientID": "@{triggerBody()['CRMid']}",

 "message": "@{body('Create_NewPatientRecord')['message']}",

 "providerId": "@{triggerBody()['providerId']}",

 "severity": 4,

 "source": "@{actions('Create_NewPatientRecord')['inputs']['body']}",

 "statusCode": "@{int(outputs('Create_NewPatientRecord')['statusCode'])}",

 "salesforceId": "",

 "update": false

 },

 "method": "post",

 "uri": "https://.../api/CrMtoSfError"

 },

 "runAfter":

 {

 "Create_NewPatientRecord": ["Failed"]

 }

 }

}

Insert error into DocumentDB--request

{

 "uri": "https://.../api/CrMtoSfError",

 "method": "post",

 "body": {

 "action": "New_Patient",

 "isError": true,

 "crmId": "6b115f6d-a7ee-e511-80f5-3863bb2eb2d0",

 "patientId": "6b115f6d-a7ee-e511-80f5-3863bb2eb2d0",

 "message": "Salesforce failed to complete task: Message: duplicate value found: Account_ID_MED__c

duplicates value on record with id: 001U000001c83gK",

 "providerId": "",

 "severity": 4,

 "salesforceId": "",

 "update": false,

 "source": "

{\"Account_Class_vod__c\":\"PRAC\",\"Account_Status_MED__c\":\"I\",\"CRM_HUB_ID__c\":\"6b115f6d-a7ee-e511-80f5-

3863bb2eb2d0\",\"Credentials_vod__c\",\"DTC_ID_MED__c\":\"\",\"Fax\":\"\",\"FirstName\":\"A\",\"Gender_vod__c\":\

"\",\"IMS_ID__c\":\"\",\"LastName\":\"BAILEY\",\"MasterID_mp__c\":\"\",\"C_ID_MED__c\":\"851588\",\"Middle_vod__c

\":\"\",\"NPI_vod__c\":\"\",\"PDRP_MED__c\":false,\"PersonDoNotCall\":false,\"PersonEmail\":\"\",\"PersonHasOpted

OutOfEmail\":false,\"PersonHasOptedOutOfFax\":false,\"PersonMobilePhone\":\"\",\"Phone\":\"\",\"Practicing_Specia

lty__c\":\"FM - FAMILY

MEDICINE\",\"Primary_City__c\":\"\",\"Primary_State__c\":\"\",\"Primary_Street_Line2__c\":\"\",\"Primary_Street__

c\":\"\",\"Primary_Zip__c\":\"\",\"RecordTypeId\":\"012U0000000JaPWIA0\",\"Request_Date__c\":\"2016-06-

10T22:31:55.9647467Z\",\"ONY_ID__c\":\"\",\"Specialty_1_vod__c\":\"\",\"Suffix_vod__c\":\"\",\"Website\":\"\"}",

 "statusCode": "400"

 }

}

Insert error into DocumentDB--response

{

 "statusCode": 200,

 "headers": {

 "Pragma": "no-cache",

 "Cache-Control": "no-cache",

 "Date": "Fri, 10 Jun 2016 22:31:57 GMT",

 "Server": "Microsoft-IIS/8.0",

 "X-AspNet-Version": "4.0.30319",

 "X-Powered-By": "ASP.NET",

 "Content-Length": "1561",

 "Content-Type": "application/json; charset=utf-8",

 "Expires": "-1"

 },

 "body": {

 "id": "6b115f6d-a7ee-e511-80f5-3863bb2eb2d0-1465597917",

 "_rid": "sQx2APhVzAA8AAAAAAAAAA==",

 "_self": "dbs/sQx2AA==/colls/sQx2APhVzAA=/docs/sQx2APhVzAA8AAAAAAAAAA==/",

 "_ts": 1465597912,

 "_etag": "\"0c00eaac-0000-0000-0000-575b3fdc0000\"",

 "prescriberId": "6b115f6d-a7ee-e511-80f5-3863bb2eb2d0",

 "timestamp": "2016-06-10T22:31:57.3651027Z",

 "action": "New_Patient",

 "salesforceId": "",

 "update": false,

 "body": "CRM failed to complete task: Message: duplicate value found: CRM_HUB_ID__c duplicates value on

record with id: 001U000001c83gK",

 "source": "

{\"Account_Class_vod__c\":\"PRAC\",\"Account_Status_MED__c\":\"I\",\"CRM_HUB_ID__c\":\"6b115f6d-a7ee-e511-80f5-

3863bb2eb2d0\",\"Credentials_vod__c\":\"DO - Degree level is

DO\",\"DTC_ID_MED__c\":\"\",\"Fax\":\"\",\"FirstName\":\"A\",\"Gender_vod__c\":\"\",\"IMS_ID__c\":\"\",\"LastName

\":\"BAILEY\",\"MterID_mp__c\":\"\",\"Medicis_ID_MED__c\":\"851588\",\"Middle_vod__c\":\"\",\"NPI_vod__c\":\"\",\

"PDRP_MED__c\":false,\"PersonDoNotCall\":false,\"PersonEmail\":\"\",\"PersonHasOptedOutOfEmail\":false,\"PersonHa

sOptedOutOfFax\":false,\"PersonMobilePhone\":\"\",\"Phone\":\"\",\"Practicing_Specialty__c\":\"FM - FAMILY

MEDICINE\",\"Primary_City__c\":\"\",\"Primary_State__c\":\"\",\"Primary_Street_Line2__c\":\"\",\"Primary_Street__

c\":\"\",\"Primary_Zip__c\":\"\",\"RecordTypeId\":\"012U0000000JaPWIA0\",\"Request_Date__c\":\"2016-06-

10T22:31:55.9647467Z\",\"XXXXXXX\":\"\",\"Specialty_1_vod__c\":\"\",\"Suffix_vod__c\":\"\",\"Website\":\"\"}",

 "code": 400,

 "errors": null,

 "isError": true,

 "severity": 4,

 "notes": null,

 "resolved": 0

 }

}

Salesforce error response

{

 "statusCode": 400,

 "headers": {

 "Pragma": "no-cache",

 "x-ms-request-id": "3e8e4884-288e-4633-972c-8271b2cc912c",

 "X-Content-Type-Options": "nosniff",

 "Cache-Control": "no-cache",

 "Date": "Fri, 10 Jun 2016 22:31:56 GMT",

 "Set-Cookie":

"ARRAffinity=785f4334b5e64d2db0b84edcc1b84f1bf37319679aefce206b51510e56fd9770;Path=/;Domain=127.0.0.1",

 "Server": "Microsoft-IIS/8.0,Microsoft-HTTPAPI/2.0",

 "X-AspNet-Version": "4.0.30319",

 "X-Powered-By": "ASP.NET",

 "Content-Length": "205",

 "Content-Type": "application/json; charset=utf-8",

 "Expires": "-1"

 },

 "body": {

 "status": 400,

 "message": "Salesforce failed to complete task: Message: duplicate value found: Account_ID_MED__c

duplicates value on record with id: 001U000001c83gK",

 "source": "Salesforce.Common",

 "errors": []

 }

}

Returning the response back to the parent logic app

Return success response to the parent logic app

"SuccessResponse": {

 "runAfter":

 {

 "UpdateNew_CRMPatientResponse": ["Succeeded"]

 },

 "inputs": {

 "body": {

 "status": "Success"

 },

 "headers": {

 " Content-type": "application/json",

 "x-ms-date": "@utcnow()"

 },

 "statusCode": 200

 },

 "type": "Response"

}

Return error response to the parent logic app

After you have the response, you can pass it back to the parent logic app.

"ErrorResponse": {

 "runAfter":

 {

 "Create_NewPatientRecord": ["Failed"]

 },

 "inputs": {

 "body": {

 "status": "BadRequest"

 },

 "headers": {

 "Content-type": "application/json",

 "x-ms-date": "@utcnow()"

 },

 "statusCode": 400

 },

 "type": "Response"

}

DocumentDB repository and portal

Error management portal

NOTE

Error management list

Error management detail view

Our solution added additional capabilities with DocumentDB.

To view the errors, you can create an MVC web app to display the error records from DocumentDB. L istL ist , DetailsDetails ,

EditEdit , and DeleteDelete operations are included in the current version.

Edit operation: DocumentDB does a replace of the entire document. The records shown in the ListList and DetailDetail views are

samples only. They are not actual patient appointment records.

Following are examples of our MVC app details created with the previously described approach.

https://azure.microsoft.com/services/documentdb

Log management portal

Sample log detail view

API app details

Logic Apps exception management API

TIP

To view the logs, we also created an MVC web app. Following are examples of our MVC app details created with the

previously described approach.

Our open-source Logic Apps exception management API app provides the following functionality.

There are two controllers:

Er rorControllerEr rorController inserts an error record (document) in a DocumentDB collection.

LogControllerLogController Inserts a log record (document) in a DocumentDB collection.

Both controllers use async Task<dynamic> operations. This allows operations to be resolved at runtime, so we can create

the DocumentDB schema in the body of the operation.

Every document in DocumentDB must have a unique ID. We are using PatientId and adding a timestamp that is

converted to a Unix timestamp value (double). We truncate it to remove the fractional value.

 "actions": {

 "CreateErrorRecord": {

 "metadata": {

 "apiDefinitionUrl": "https://.../swagger/docs/v1",

 "swaggerSource": "website"

 },

 "type": "Http",

 "inputs": {

 "body": {

 "action": "New_Patient",

 "isError": true,

 "crmId": "@{triggerBody()['CRMid']}",

 "prescriberId": "@{triggerBody()['CRMid']}",

 "message": "@{body('Create_NewPatientRecord')['message']}",

 "salesforceId": "@{triggerBody()['salesforceID']}",

 "severity": 4,

 "source": "@{actions('Create_NewPatientRecord')['inputs']['body']}",

 "statusCode": "@{int(outputs('Create_NewPatientRecord')['statusCode'])}",

 "update": false

 },

 "method": "post",

 "uri": "https://.../api/CrMtoSfError"

 },

 "runAfter": {

 "Create_NewPatientRecord": ["Failed"]

 }

 }

 }

Summary

Source code

Next steps

You can view the source code of our error controller API from GitHub.

We call the API from a logic app by using the following syntax.

The expression in the preceding code sample is checking for the Create_NewPatientRecord status of FailedFailed.

You can easily implement logging and error handling in a logic app.

You can use DocumentDB as the repository for log and error records (documents).

You can use MVC to create a portal to display log and error records.

The source code for the Logic Apps exception management API application is available in this GitHub repository.

View more Logic Apps examples and scenarios

Learn about Logic Apps monitoring tools

Create a Logic App automated deployment template

https://github.com/HEDIDIN/LogicAppsExceptionManagementApi/blob/master/Logic App Exception Management API/Controllers/ErrorController.cs
https://github.com/HEDIDIN/LogicAppsExceptionManagementApi
file:///D:/azure-docs-pr/_site/azure/.tmp/app-service-logic/app-service-logic-examples-and-scenarios.html
file:///D:/azure-docs-pr/_site/azure/.tmp/app-service-logic/app-service-logic-monitor-your-logic-apps.html
file:///D:/azure-docs-pr/_site/azure/.tmp/app-service-logic/app-service-logic-create-deploy-template.html

Christopher Anderson • wesmc • Glenn Gailey • cephalin • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • Sylvan Clebsch

• Tom Dykstra

Azure Functions DocumentDB bindings
11/15/2016 • 5 min to read • Edit on GitHub

Contributors

DocumentDB input binding

{

 "name": "<Name of input parameter in function signature>",

 "type": "documentDB",

 "databaseName": "<Name of the DocumentDB database>",

 "collectionName": "<Name of the DocumentDB collection>",

 "id": "<Id of the DocumentDB document - see below>",

 "connection": "<Name of app setting with connection string - see below>",

 "direction": "in"

},

Input usage

This article explains how to configure and code Azure DocumentDB bindings in Azure Functions. Azure Functions

supports input and output bindings for DocumentDB.

This is reference information for Azure Functions developers. If you're new to Azure Functions, start with the

following resources:

Create your first Azure Function

Azure Functions developer reference

C#, F#, or Node developer reference

For more information on DocumentDB, see Introduction to DocumentDB and Build a DocumentDB console

application.

The DocumentDB input binding retrieves a DocumentDB document and passes it to the named input parameter of

the function. The document ID can be determined based on the trigger that invokes the function.

The DocumentDB input to a function uses the following JSON object in the bindings array of function.json:

Note the following:

id supports bindings similar to {queueTrigger} , which uses the string value of the queue message as the

document Id.

connection must be the name of an app setting that points to the endpoint for your DocumentDB account (with

the value AccountEndpoint=<Endpoint for your account>;AccountKey=<Your primary access key>). If you create a

DocumentDB account through the Functions portal UI, the account creation process creates an app setting for

you. To use an existing DocumentDB account, you need to [configure this app setting manually]().

If the specified document is not found, the named input parameter to the function is set to null .

This section shows you how to use your DocumentDB input binding in your function code.

In C# and F# functions, any changes made to the input document (named input parameter) is automatically sent

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-functions/functions-bindings-documentdb.md
https://github.com/christopheranderson
https://github.com/wesmc7777
https://github.com/ggailey777
https://github.com/cephalin
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/sylvanc
https://github.com/tdykstra
file:///D:/azure-docs-pr/_site/azure/.tmp/azure-functions/functions-create-first-azure-function.html
file:///D:/azure-docs-pr/_site/azure/.tmp/azure-functions/functions-reference.html
file:///D:/azure-docs-pr/_site/azure/.tmp/azure-functions/functions-reference-csharp.html
file:///D:/azure-docs-pr/_site/azure/.tmp/azure-functions/functions-reference-fsharp.html
file:///D:/azure-docs-pr/_site/azure/.tmp/azure-functions/functions-reference-node.html

Input sample

{

 "name": "inputDocument",

 "type": "documentDB",

 "databaseName": "MyDatabase",

 "collectionName": "MyCollection",

 "id" : "{queueTrigger}",

 "connection": "MyAccount_DOCUMENTDB",

 "direction": "in"

}

Input sample in C#

public static void Run(string myQueueItem, dynamic inputDocument)

{

 inputDocument.text = "This has changed.";

}

Input sample in F#

open FSharp.Interop.Dynamic

let Run(myQueueItem: string, inputDocument: obj) =

 inputDocument?text <- "This has changed."

{

 "frameworks": {

 "net46": {

 "dependencies": {

 "Dynamitey": "1.0.2",

 "FSharp.Interop.Dynamic": "3.0.0"

 }

 }

 }

}

Input sample in Node.js

back to the collection when the function exits successfully. In Node.js functions, updates to the document in the

input binding are not sent back to the collection. However, you can use context.bindings.<documentName>In and

context.bindings.<documentName>Out to make updates to input documents. See how it is done in the Node.js

sample.

Suppose you have the following DocumentDB input binding in the bindings array of function.json:

See the language-specific sample that uses this input binding to update the document's text value.

C#

F#

Node.js

You need to add a project.json file that specifies the FSharp.Interop.Dynamic and Dynamitey NuGet

dependencies:

To add a project.json file, see F# package management.

file:///D:/azure-docs-pr/_site/azure/.tmp/azure-functions/functions-reference-fsharp.html#package

module.exports = function (context) {

 context.bindings.inputDocumentOut = context.bindings.inputDocumentIn;

 context.bindings.inputDocumentOut.text = "This was updated!";

 context.done();

};

DocumentDB output binding

{

 "name": "<Name of output parameter in function signature>",

 "type": "documentDB",

 "databaseName": "<Name of the DocumentDB database>",

 "collectionName": "<Name of the DocumentDB collection>",

 "createIfNotExists": <true or false - see below>,

 "connection": "<Value of AccountEndpoint in Application Setting - see below>",

 "direction": "out"

}

Output usage

Output sample

{

 "name": "employeeDocument",

 "type": "documentDB",

 "databaseName": "MyDatabase",

 "collectionName": "MyCollection",

 "createIfNotExists": true,

 "connection": "MyAccount_DOCUMENTDB",

 "direction": "out"

}

The DocumentDB output binding lets you write a new document to an Azure DocumentDB database.

The output binding uses the following JSON object in the bindings array of function.json:

Note the following:

Set createIfNotExists to true to create the database and collection if it doesn't exist. The default value is

false . New collections are created with reserved throughput, which has pricing implications. For more

information, see DocumentDB pricing.

connection must be the name of an app setting that points to the endpoint for your DocumentDB account (with

the value AccountEndpoint=<Endpoint for your account>;AccountKey=<Your primary access key>). If you create a

DocumentDB account through the Functions portal UI, the account creation process creates a new app setting

for you. To use an existing DocumentDB account, you need to [configure this app setting manually]().

This section shows you how to use your DocumentDB output binding in your function code.

When you write to the output parameter in your function, by default a new document is generated in your

database, with an automatically generated GUID as the document ID. You can specify the document ID of output

document by specifying the id JSON property in the output parameter. If a document with that ID already exists,

the output document overwrites it.

Suppose you have the following DocumentDB output binding in the bindings array of function.json:

And you have a queue input binding for a queue that receives JSON in the following format:

https://azure.microsoft.com/pricing/details/documentdb/

{

 "name": "John Henry",

 "employeeId": "123456",

 "address": "A town nearby"

}

{

 "id": "John Henry-123456",

 "name": "John Henry",

 "employeeId": "123456",

 "address": "A town nearby"

}

Output sample in C#

#r "Newtonsoft.Json"

using System;

using Newtonsoft.Json;

using Newtonsoft.Json.Linq;

public static void Run(string myQueueItem, out object employeeDocument, TraceWriter log)

{

 log.Info($"C# Queue trigger function processed: {myQueueItem}");

 dynamic employee = JObject.Parse(myQueueItem);

 employeeDocument = new {

 id = employee.name + "-" + employee.employeeId,

 name = employee.name,

 employeeId = employee.employeeId,

 address = employee.address

 };

}

Output sample in F#

And you want to create DocumentDB documents in the following format for each record:

See the language-specific sample that uses this output binding to add documents to your database.

C#

F#

Node.js

open FSharp.Interop.Dynamic

open Newtonsoft.Json

type Employee = {

 id: string

 name: string

 employeeId: string

 address: string

}

let Run(myQueueItem: string, employeeDocument: byref<obj>, log: TraceWriter) =

 log.Info(sprintf "F# Queue trigger function processed: %s" myQueueItem)

 let employee = JObject.Parse(myQueueItem)

 employeeDocument <-

 { id = sprintf "%s-%s" employee?name employee?employeeId

 name = employee?name

 employeeId = employee?employeeId

 address = employee?address }

{

 "frameworks": {

 "net46": {

 "dependencies": {

 "Dynamitey": "1.0.2",

 "FSharp.Interop.Dynamic": "3.0.0"

 }

 }

 }

}

Output sample in Node.js

module.exports = function (context) {

 context.bindings.employeeDocument = JSON.stringify({

 id: context.bindings.myQueueItem.name + "-" + context.bindings.myQueueItem.employeeId,

 name: context.bindings.myQueueItem.name,

 employeeId: context.bindings.myQueueItem.employeeId,

 address: context.bindings.myQueueItem.address

 });

 context.done();

};

You need to add a project.json file that specifies the FSharp.Interop.Dynamic and Dynamitey NuGet

dependencies:

To add a project.json file, see F# package management.

file:///D:/azure-docs-pr/_site/azure/.tmp/azure-functions/functions-reference-fsharp.html#package

Denny Lee • Theano Petersen • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • mimig • Andrew Hoh • nitinme • v-aljenk

Run a Hadoop job using DocumentDB and HDInsight
11/15/2016 • 15 min to read • Edit on GitHub

Contributors

TIP

This tutorial shows you how to run Apache Hive, Apache Pig, and Apache Hadoop MapReduce jobs on Azure

HDInsight with DocumentDB's Hadoop connector. DocumentDB's Hadoop connector allows DocumentDB to act as

both a source and sink for Hive, Pig, and MapReduce jobs. This tutorial will use DocumentDB as both the data

source and destination for Hadoop jobs.

After completing this tutorial, you'll be able to answer the following questions:

How do I load data from DocumentDB using a Hive, Pig, or MapReduce job?

How do I store data in DocumentDB using a Hive, Pig, or MapReduce job?

We recommend getting started by watching the following video, where we run through a Hive job using

DocumentDB and HDInsight.

Then, return to this article, where you'll receive the full details on how you can run analytics jobs on your

DocumentDB data.

This tutorial assumes that you have prior experience using Apache Hadoop, Hive, and/or Pig. If you are new to Apache

Hadoop, Hive, and Pig, we recommend visiting the Apache Hadoop documentation. This tutorial also assumes that you have

prior experience with DocumentDB and have a DocumentDB account. If you are new to DocumentDB or you do not have a

DocumentDB account, please check out our Getting Started page.

Don't have time to complete the tutorial and just want to get the full sample PowerShell scripts for Hive, Pig, and

MapReduce? Not a problem, get them here. The download also contains the hql, pig, and java files for these

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-run-hadoop-with-hdinsight.md
https://github.com/dennyglee
https://github.com/v-thepet
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/mimig1
https://github.com/AndrewHoh
https://github.com/nitinme
https://github.com/v-aljenk
http://hive.apache.org/
http://pig.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/docs/current/
http://portalcontent.blob.core.windows.net/samples/documentdb-hdinsight-samples.zip

Newest Version

HADOOP CONNECTOR VERSIONHADOOP CONNECTOR VERSION 1.2.0

SCRIPT URISCRIPT URI https://portalcontent.blob.core.windows.net/scriptaction/docu
mentdb-hadoop-installer-v04.ps1

DATE MODIFIEDDATE MODIFIED 04/26/2016

SUPPORTED HDINSIGHT VERSIONSSUPPORTED HDINSIGHT VERSIONS 3.1, 3.2

CHANGE LOGCHANGE LOG Updated DocumentDB Java SDK to 1.6.0
Added support for partitioned collections as both a source
and sink

Prerequisites

WARNING

Step 1: Create a new HDInsight cluster

samples.

Before following the instructions in this tutorial, ensure that you have the following:

A DocumentDB account, a database, and a collection with documents inside. For more information, see Getting

Started with DocumentDB. Import sample data into your DocumentDB account with the DocumentDB import

tool.

Throughput. Reads and writes from HDInsight will be counted towards your allotted request units for your

collections. For more information, see Provisioned throughput, request units, and database operations.

Capacity for an additional stored procedure within each output collection. The stored procedures are used for

transferring resulting documents. For more information, see Collections and provisioned throughput.

Capacity for the resulting documents from the Hive, Pig, or MapReduce jobs. For more information, see Manage

DocumentDB capacity and performance.

[Optional] Capacity for an additional collection. For more information, see Provisioned document storage and

index overhead.

In order to avoid the creation of a new collection during any of the jobs, you can either print the results to stdout, save the

output to your WASB container, or specify an already existing collection. In the case of specifying an existing collection, new

documents will be created inside the collection and already existing documents will only be affected if there is a conflict in ids.

The connector will automatically overwrite existing documents with id conflictsThe connector will automatically overwrite existing documents with id conflicts . You can turn off this feature by

setting the upsert option to false. If upsert is false and a conflict occurs, the Hadoop job will fail; reporting an id conflict error.

This tutorial uses Script Action from the Azure Portal to customize your HDInsight cluster. In this tutorial, we will

use the Azure Portal to create your HDInsight cluster. For instructions on how to use PowerShell cmdlets or the

HDInsight .NET SDK, check out the Customize HDInsight clusters using Script Action article.

1. Sign in to the Azure Portal.

2. Click + New+ New on the top of the left navigation, search for HDInsightHDInsight in the top search bar on the New blade.

3. HDInsightHDInsight published by MicrosoftMicrosoft will appear at the top of the Results. Click on it and then click CreateCreate.

4. On the New HDInsight Cluster create blade, enter your Cluster NameCluster Name and select the Subscr iptionSubscr iption you

want to provision this resource under.

https://portalcontent.blob.core.windows.net/scriptaction/documentdb-hadoop-installer-v04.ps1
file:///D:/azure-docs-pr/_site/azure/.tmp/hdinsight/hdinsight-provision-clusters.html
https://portal.azure.com/

Cluster name Name the cluster.
DNS name must start and end with an alpha numeric
character, and may contain dashes.
The field must be a string between 3 and 63 characters.

Subscription Name If you have more than one Azure Subscription, select the
subscription that will host your HDInsight cluster.

Cluster type HadoopHadoop

Cluster tier StandardStandard

Operating System WindowsWindows

Version latest version

5. Click Select Cluster TypeSelect Cluster Type and set the following properties to the specified values.

Now, click SELECTSELECT.

6. Click on CredentialsCredentials to set your login and remote access credentials. Choose your Cluster LoginCluster Login

UsernameUsername and Cluster Login PasswordCluster Login Password.

If you want to remote into your cluster, select yes at the bottom of the blade and provide a username and

password.

 Step 2: Install and configure Azure PowerShell

7. Click on Data SourceData Source to set your primary location for data access. Choose the Selection MethodSelection Method and specify

an already existing storage account or create a new one.

NOTE

9. Click on Pr icingPr icing to select the number and type of nodes. You can keep the default configuration and scale the

number of Worker nodes later on.

PROPERTYPROPERTY VALUEVALUE

Name Specify a name for the script action.

Script URI Specify the URI to the script that is invoked to customize
the cluster.
Please enter:
https://portalcontent.blob.core.windows.net/scripthttps://portalcontent.blob.core.windows.net/script
action/documentdb-hadoop-installer-v04.ps1action/documentdb-hadoop-installer-v04.ps1 .

Head Click the checkbox to run the PowerShell script onto the
Head node.
Check this checkboxCheck this checkbox.

Worker Click the checkbox to run the PowerShell script onto the
Worker node.
Check this checkboxCheck this checkbox.

Zookeeper Click the checkbox to run the PowerShell script onto the
Zookeeper.
Not neededNot needed.

Parameters Specify the parameters, if required by the script.
No Parameters neededNo Parameters needed.

11. Create either a new Resource GroupResource Group or use an existing Resource Group under your Azure Subscription.

12. Now, check Pin to dashboardPin to dashboard to track its deployment and click CreateCreate!

8. On the same blade, specify a Default ContainerDefault Container and a LocationLocation . And, click SELECTSELECT.

Select a location close to your DocumentDB account region for better performance

10. Click Optional ConfigurationOptional Configuration , then Scr ipt ActionsScr ipt Actions in the Optional Configuration Blade.

In Script Actions, enter the following information to customize your HDInsight cluster.

NOTE

1. Install Azure PowerShell. Instructions can be found here.

Alternatively, just for Hive queries, you can use HDInsight's online Hive Editor. To do so, sign in to the Azure Portal,

click HDInsightHDInsight on the left pane to view a list of your HDInsight clusters. Click the cluster you want to run Hive

queries on, and then click Query ConsoleQuery Console.

2. Open the Azure PowerShell Integrated Scripting Environment:

On a computer running Windows 8 or Windows Server 2012 or higher, you can use the built-in Search.

https://portalcontent.blob.core.windows.net/scriptaction/documentdb-hadoop-installer-v04.ps1
file:///D:/azure-docs-pr/_site/azure/.tmp/powershell-install-configure.html
https://portal.azure.com/

 Step 3: Run a Hive job using DocumentDB and HDInsight

IMPORTANT

From the Start screen, type powershell isepowershell ise and click EnterEnter .

On a computer running a version earlier than Windows 8 or Windows Server 2012, use the Start menu.

From the Start menu, type Command PromptCommand Prompt in the search box, then in the list of results, click

Command PromptCommand Prompt. In the Command Prompt, type powershell_ isepowershell_ ise and click EnterEnter .

3. Add your Azure Account.

a. In the Console Pane, type Add-AzureAccountAdd-AzureAccount and click EnterEnter .

b. Type in the email address associated with your Azure subscription and click ContinueContinue.

c. Type in the password for your Azure subscription.

d. Click S ign inS ign in .

4. The following diagram identifies the important parts of your Azure PowerShell Scripting Environment.

All variables indicated by < > must be filled in using your configuration settings.

 # Provide Azure subscription name, the Azure Storage account and container that is used for the default

HDInsight file system.

 $subscriptionName = "<SubscriptionName>"

 $storageAccountName = "<AzureStorageAccountName>"

 $containerName = "<AzureStorageContainerName>"

 # Provide the HDInsight cluster name where you want to run the Hive job.

 $clusterName = "<HDInsightClusterName>"

1. Set the following variables in your PowerShell Script pane.

2. Let's begin constructing your query string. We'll write a Hive query that takes all documents' system

generated timestamps (_ts) and unique ids (_rid) from a DocumentDB collection, tallies all documents by the

minute, and then stores the results back into a new DocumentDB collection.

First, let's create a Hive table from our DocumentDB collection. Add the following code snippet to the

PowerShell Script pane afterafter the code snippet from #1. Make sure you include the optional

DocumentDB.query parameter t trim our documents to just _ts and _rid.

NOTE

 '*DocumentDB.inputCollections*' = '*\<DocumentDB Input Collection Name 1\>*,*\<DocumentDB Input

Collection Name 2\>*' A1A</br> The collection names are separated without spaces, using only a single

comma.

 # Create a Hive table using data from DocumentDB. Pass DocumentDB the query to filter transferred data to

_rid and _ts.

 $queryStringPart1 = "drop table DocumentDB_timestamps; " +

 "create external table DocumentDB_timestamps(id string, ts BIGINT) " +

 "stored by 'com.microsoft.azure.documentdb.hive.DocumentDBStorageHandler' " +

 "tblproperties (" +

 "'DocumentDB.endpoint' = '<DocumentDB Endpoint>', " +

 "'DocumentDB.key' = '<DocumentDB Primary Key>', " +

 "'DocumentDB.db' = '<DocumentDB Database Name>', " +

 "'DocumentDB.inputCollections' = '<DocumentDB Input Collection Name>', " +

 "'DocumentDB.query' = 'SELECT r._rid AS id, r._ts AS ts FROM root r'); "

NOTE

Create a Hive table for the output data to DocumentDB.

$queryStringPart2 = "drop table DocumentDB_analytics; " +

 "create external table DocumentDB_analytics(Month INT, Day INT, Hour INT, Minute

INT, Total INT) " +

 "stored by 'com.microsoft.azure.documentdb.hive.DocumentDBStorageHandler' " +

 "tblproperties (" +

 "'DocumentDB.endpoint' = '<DocumentDB Endpoint>', " +

 "'DocumentDB.key' = '<DocumentDB Primary Key>', " +

 "'DocumentDB.db' = '<DocumentDB Database Name>', " +

 "'DocumentDB.outputCollections' = '<DocumentDB Output Collection Name>'); "

 # GROUP BY minute, COUNT entries for each, INSERT INTO output Hive table.

 $queryStringPart3 = "INSERT INTO table DocumentDB_analytics " +

 "SELECT month(from_unixtime(ts)) as Month, day(from_unixtime(ts)) as Day, " +

 "hour(from_unixtime(ts)) as Hour, minute(from_unixtime(ts)) as Minute, " +

 "COUNT(*) AS Total " +

 "FROM DocumentDB_timestamps " +

 "GROUP BY month(from_unixtime(ts)), day(from_unixtime(ts)), " +

 "hour(from_unixtime(ts)) , minute(from_unixtime(ts)); "

Naming DocumentDB.inputCollections was not a mistake.Naming DocumentDB.inputCollections was not a mistake. Yes, we allow adding multiple collections as an

input:

3. Next, let's create a Hive table for the output collection. The output document properties will be the month,

day, hour, minute, and the total number of occurrences.

Yet again, naming DocumentDB.outputCollections was not a mistake.Yet again, naming DocumentDB.outputCollections was not a mistake. Yes, we allow adding multiple

collections as an output:

'DocumentDB.outputCollections' = '<DocumentDB Output Collection Name 1>,<DocumentDB Output Collection

Name 2>'

The collection names are separated without spaces, using only a single comma.

Documents will be distributed round-robin across multiple collections. A batch of documents will be stored in one

collection, then a second batch of documents will be stored in the next collection, and so forth.

4. Finally, let's tally the documents by month, day, hour, and minute and insert the results back into the output

Hive table.

5. Add the following script snippet to create a Hive job definition from the previous query.

 Step 4: Run a Pig job using DocumentDB and HDInsight

 # Create a Hive job definition.

 $queryString = $queryStringPart1 + $queryStringPart2 + $queryStringPart3

 $hiveJobDefinition = New-AzureHDInsightHiveJobDefinition -Query $queryString

 # Save the start time and submit the job to the cluster.

 $startTime = Get-Date

 Select-AzureSubscription $subscriptionName

 $hiveJob = Start-AzureHDInsightJob -Cluster $clusterName -JobDefinition $hiveJobDefinition

 # Wait for the Hive job to complete.

 Wait-AzureHDInsightJob -Job $hiveJob -WaitTimeoutInSeconds 3600

 # Print the standard error, the standard output of the Hive job, and the start and end time.

 $endTime = Get-Date

 Get-AzureHDInsightJobOutput -Cluster $clusterName -JobId $hiveJob.JobId -StandardOutput

 Write-Host "Start: " $startTime ", End: " $endTime -ForegroundColor Green

9. RunRun your new script! ClickClick the green execute button.

You can also use the -File switch to specify a HiveQL script file on HDFS.

6. Add the following snippet to save the start time and submit the Hive job.

7. Add the following to wait for the Hive job to complete.

8. Add the following to print the standard output and the start and end times.

10. Check the results. Sign into the Azure Portal.

a. Click BrowseBrowse on the left-side panel.

b. Click everythingeverything at the top-right of the browse panel.

c. Find and click DocumentDB AccountsDocumentDB Accounts .

d. Next, find your DocumentDB AccountDocumentDB Account, then DocumentDB DatabaseDocumentDB Database and your DocumentDBDocumentDB

CollectionCollection associated with the output collection specified in your Hive query.

e. Finally, click Document ExplorerDocument Explorer underneath Developer ToolsDeveloper Tools .

You will see the results of your Hive query.

https://portal.azure.com/

IMPORTANT

All variables indicated by < > must be filled in using your configuration settings.

 # Provide Azure subscription name.

 $subscriptionName = "Azure Subscription Name"

 # Provide HDInsight cluster name where you want to run the Pig job.

 $clusterName = "Azure HDInsight Cluster Name"

NOTE

 # Load data from DocumentDB. Pass DocumentDB query to filter transferred data to _rid and _ts.

 $queryStringPart1 = "DocumentDB_timestamps = LOAD '<DocumentDB Endpoint>' USING

com.microsoft.azure.documentdb.pig.DocumentDBLoader(" +

 "'<DocumentDB Primary Key>', " +

 "'<DocumentDB Database Name>', " +

 "'<DocumentDB Input Collection Name>', " +

 "'SELECT r._rid AS id, r._ts AS ts FROM root r'); "

GROUP BY minute and COUNT entries for each.

$queryStringPart2 = "timestamp_record = FOREACH DocumentDB_timestamps GENERATE `$0#'id' as id:int,

ToDate((long)(`$0#'ts') * 1000) as timestamp:datetime; " +

 "by_minute = GROUP timestamp_record BY (GetYear(timestamp), GetMonth(timestamp),

GetDay(timestamp), GetHour(timestamp), GetMinute(timestamp)); " +

 "by_minute_count = FOREACH by_minute GENERATE FLATTEN(group) as (Year:int, Month:int,

Day:int, Hour:int, Minute:int), COUNT(timestamp_record) as Total:int; "

1. Set the following variables in your PowerShell Script pane.

2. Let's begin constructing your query string. We'll write a Pig query that takes all documents' system

generated timestamps (_ts) and unique ids (_rid) from a DocumentDB collection, tallies all documents by the

minute, and then stores the results back into a new DocumentDB collection.

First, load documents from DocumentDB into HDInsight. Add the following code snippet to the PowerShell

Script pane afterafter the code snippet from #1. Make sure to add a DocumentDB query to the optional

DocumentDB query parameter to trim our documents to just _ts and _rid.

Yes, we allow adding multiple collections as an input:

'<DocumentDB Input Collection Name 1>,<DocumentDB Input Collection Name 2>'

The collection names are separated without spaces, using only a single comma.

Documents will be distributed round-robin across multiple collections. A batch of documents will be stored

in one collection, then a second batch of documents will be stored in the next collection, and so forth.

3. Next, let's tally the documents by the month, day, hour, minute, and the total number of occurrences.

4. Finally, let's store the results into our new output collection.

NOTE

 # Store output data to DocumentDB.

 $queryStringPart3 = "STORE by_minute_count INTO '<DocumentDB Endpoint>' " +

 "USING com.microsoft.azure.documentdb.pig.DocumentDBStorage(" +

 "'<DocumentDB Primary Key>', " +

 "'<DocumentDB Database Name>', " +

 "'<DocumentDB Output Collection Name>'); "

 # Create a Pig job definition.

 $queryString = $queryStringPart1 + $queryStringPart2 + $queryStringPart3

 $pigJobDefinition = New-AzureHDInsightPigJobDefinition -Query $queryString -StatusFolder $statusFolder

 # Save the start time and submit the job to the cluster.

 $startTime = Get-Date

 Select-AzureSubscription $subscriptionName

 $pigJob = Start-AzureHDInsightJob -Cluster $clusterName -JobDefinition $pigJobDefinition

 # Wait for the Pig job to complete.

 Wait-AzureHDInsightJob -Job $pigJob -WaitTimeoutInSeconds 3600

 # Print the standard error, the standard output of the Hive job, and the start and end time.

 $endTime = Get-Date

 Get-AzureHDInsightJobOutput -Cluster $clusterName -JobId $pigJob.JobId -StandardOutput

 Write-Host "Start: " $startTime ", End: " $endTime -ForegroundColor Green

9. RunRun your new script! ClickClick the green execute button.

Yes, we allow adding multiple collections as an output:

'<DocumentDB Output Collection Name 1>,<DocumentDB Output Collection Name 2>'

The collection names are separated without spaces, using only a single comma.

Documents will be distributed round-robin across the multiple collections. A batch of documents will be stored in one

collection, then a second batch of documents will be stored in the next collection, and so forth.

5. Add the following script snippet to create a Pig job definition from the previous query.

You can also use the -File switch to specify a Pig script file on HDFS.

6. Add the following snippet to save the start time and submit the Pig job.

7. Add the following to wait for the Pig job to complete.

8. Add the following to print the standard output and the start and end times.

10. Check the results. Sign into the Azure Portal.

a. Click BrowseBrowse on the left-side panel.

b. Click everythingeverything at the top-right of the browse panel.

c. Find and click DocumentDB AccountsDocumentDB Accounts .

d. Next, find your DocumentDB AccountDocumentDB Account, then DocumentDB DatabaseDocumentDB Database and your DocumentDBDocumentDB

CollectionCollection associated with the output collection specified in your Pig query.

e. Finally, click Document ExplorerDocument Explorer underneath Developer ToolsDeveloper Tools .

You will see the results of your Pig query.

https://portal.azure.com/

 Step 5: Run a MapReduce job using DocumentDB and HDInsight

 $subscriptionName = "<SubscriptionName>" # Azure subscription name

 $clusterName = "<ClusterName>" # HDInsight cluster name

 # Define the MapReduce job.

 $TallyPropertiesJobDefinition = New-AzureHDInsightMapReduceJobDefinition -JarFile

"wasb:///example/jars/TallyProperties-v01.jar" -ClassName "TallyProperties" -Arguments "<DocumentDB

Endpoint>","<DocumentDB Primary Key>", "<DocumentDB Database Name>","<DocumentDB Input Collection Name>","

<DocumentDB Output Collection Name>","<[Optional] DocumentDB Query>"

NOTE

 # Save the start time and submit the job.

 $startTime = Get-Date

 Select-AzureSubscription $subscriptionName

 $TallyPropertiesJob = Start-AzureHDInsightJob -Cluster $clusterName -JobDefinition

$TallyPropertiesJobDefinition | Wait-AzureHDInsightJob -WaitTimeoutInSeconds 3600

 # Get the job output and print the start and end time.

 $endTime = Get-Date

 Get-AzureHDInsightJobOutput -Cluster $clusterName -JobId $TallyPropertiesJob.JobId -StandardError

 Write-Host "Start: " $startTime ", End: " $endTime -ForegroundColor Green

5. RunRun your new script! ClickClick the green execute button.

1. Set the following variables in your PowerShell Script pane.

2. We'll execute a MapReduce job that tallies the number of occurrences for each Document property from

your DocumentDB collection. Add this script snippet afterafter the snippet above.

TallyProperties-v01.jar comes with the custom installation of the DocumentDB Hadoop Connector.

3. Add the following command to submit the MapReduce job.

In addition to the MapReduce job definition, you also provide the HDInsight cluster name where you want to

run the MapReduce job, and the credentials. The Start-AzureHDInsightJob is an asynchronized call. To check

the completion of the job, use the Wait-AzureHDInsightJob cmdlet.

4. Add the following command to check any errors with running the MapReduce job.

6. Check the results. Sign into the Azure Portal.

https://portal.azure.com/

 Next Steps

a. Click BrowseBrowse on the left-side panel.

b. Click everythingeverything at the top-right of the browse panel.

c. Find and click DocumentDB AccountsDocumentDB Accounts .

d. Next, find your DocumentDB AccountDocumentDB Account, then DocumentDB DatabaseDocumentDB Database and your DocumentDBDocumentDB

CollectionCollection associated with the output collection specified in your MapReduce job.

e. Finally, click Document ExplorerDocument Explorer underneath Developer ToolsDeveloper Tools .

You will see the results of your MapReduce job.

Congratulations! You just ran your first Hive, Pig, and MapReduce jobs using Azure DocumentDB and HDInsight.

We have open sourced our Hadoop Connector. If you're interested, you can contribute on GitHub.

To learn more, see the following articles:

Develop a Java application with Documentdb

Develop Java MapReduce programs for Hadoop in HDInsight

Get started using Hadoop with Hive in HDInsight to analyze mobile handset use

Use MapReduce with HDInsight

Use Hive with HDInsight

Use Pig with HDInsight

Customize HDInsight clusters using Script Action

https://github.com/Azure/azure-documentdb-hadoop
file:///D:/azure-docs-pr/_site/azure/.tmp/hdinsight/hdinsight-develop-deploy-java-mapreduce-linux.html
file:///D:/azure-docs-pr/_site/azure/.tmp/hdinsight/hdinsight-hadoop-tutorial-get-started-windows.html
file:///D:/azure-docs-pr/_site/azure/.tmp/hdinsight/hdinsight-use-mapreduce.html
file:///D:/azure-docs-pr/_site/azure/.tmp/hdinsight/hdinsight-use-hive.html
file:///D:/azure-docs-pr/_site/azure/.tmp/hdinsight/hdinsight-use-pig.html
file:///D:/azure-docs-pr/_site/azure/.tmp/hdinsight/hdinsight-hadoop-customize-cluster.html

Denny Lee • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • mimig • Andrew Hoh • v-aljenk • Andrew Liu

• Dene Hager

Connecting DocumentDB with Azure Search using
indexers
11/15/2016 • 7 min to read • Edit on GitHub

Contributors

Azure Search indexer concepts

Step 1: Create a data source

POST https://[Search service name].search.windows.net/datasources?api-version=[api-version]

Content-Type: application/json

api-key: [Search service admin key]

If you're looking to implement great search experiences over your DocumentDB data, use Azure Search indexer for

DocumentDB! In this article, we will show you how to integrate Azure DocumentDB with Azure Search without

having to write any code to maintain indexing infrastructure!

To set this up, you have to setup an Azure Search account (you don't need to upgrade to standard search), and then

call the Azure Search REST API to create a DocumentDB data sourcedata source and an indexerindexer for that data source.

In order send requests to interact with the REST APIs, you can use Postman, Fiddler, or any tool of your preference.

Azure Search supports the creation and management of data sources (including DocumentDB) and indexers that

operate against those data sources.

A data sourcedata source specifies what data needs to be indexed, credentials to access the data, and policies to enable Azure

Search to efficiently identify changes in the data (such as modified or deleted documents inside your collection).

The data source is defined as an independent resource so that it can be used by multiple indexers.

An indexerindexer describes how the data flows from your data source into a target search index. You should plan on

creating one indexer for every target index and data source combination. While you can have multiple indexers

writing into the same index, an indexer can only write into a single index. An indexer is used to:

Perform a one-time copy of the data to populate an index.

Sync an index with changes in the data source on a schedule. The schedule is part of the indexer definition.

Invoke on-demand updates to an index as needed.

Issue a HTTP POST request to create a new data source in your Azure Search service, including the following

request headers.

The api-version is required. Valid values include 2015-02-28 or a later version. Visit API versions in Azure Search

to see all supported Search API versions.

The body of the request contains the data source definition, which should include the following fields:

namename: Choose any name to represent your DocumentDB database.

typetype: Use documentdb .

credentialscredentials :

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-search-indexer.md
https://github.com/dennyglee
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/mimig1
https://github.com/AndrewHoh
https://github.com/v-aljenk
https://github.com/aliuy
https://github.com/deneha
file:///D:/azure-docs-pr/_site/azure/.tmp/search/search-create-service-portal.html
https://msdn.microsoft.com/library/azure/dn798935.aspx
https://www.getpostman.com/
http://www.telerik.com/fiddler
file:///D:/azure-docs-pr/_site/azure/.tmp/search/search-api-versions.html

Capturing changed documents

{

 "@odata.type" : "#Microsoft.Azure.Search.HighWaterMarkChangeDetectionPolicy",

 "highWaterMarkColumnName" : "_ts"

}

SELECT s.id, s.Title, s.Abstract, s._ts FROM Sessions s WHERE s._ts >= @HighWaterMark

Capturing deleted documents

{

 "@odata.type" : "#Microsoft.Azure.Search.SoftDeleteColumnDeletionDetectionPolicy",

 "softDeleteColumnName" : "the property that specifies whether a document was deleted",

 "softDeleteMarkerValue" : "the value that identifies a document as deleted"

}

NOTE

Request body example

dataChangeDetectionPolicydataChangeDetectionPolicy : Optional. See Data Change Detection Policy below.

dataDeletionDetectionPolicydataDeletionDetectionPolicy : Optional. See Data Deletion Detection Policy below.

connectionStr ingconnectionStr ing: Required. Specify the connection info to your Azure DocumentDB database in the

following format:

AccountEndpoint=<DocumentDB endpoint url>;AccountKey=<DocumentDB auth key>;Database=<DocumentDB
database id>

containercontainer :

namename: Required. Specify the id of the DocumentDB collection to be indexed.

queryquery : Optional. You can specify a query to flatten an arbitrary JSON document into a flat schema that

Azure Search can index.

See below for an example request body.

The purpose of a data change detection policy is to efficiently identify changed data items. Currently, the only

supported policy is the High Water Mark policy using the _ts last-modified timestamp property provided by

DocumentDB - which is specified as follows:

You will also need to add _ts in the projection and WHERE clause for your query. For example:

When rows are deleted from the source table, you should delete those rows from the search index as well. The

purpose of a data deletion detection policy is to efficiently identify deleted data items. Currently, the only supported

policy is the Soft Delete policy (deletion is marked with a flag of some sort), which is specified as follows:

You will need to include the softDeleteColumnName property in your SELECT clause if you are using a custom projection.

The following example creates a data source with a custom query and policy hints:

{

 "name": "mydocdbdatasource",

 "type": "documentdb",

 "credentials": {

 "connectionString":

"AccountEndpoint=https://myDocDbEndpoint.documents.azure.com;AccountKey=myDocDbAuthKey;Database=myDocDbDatabaseI

d"

 },

 "container": {

 "name": "myDocDbCollectionId",

 "query": "SELECT s.id, s.Title, s.Abstract, s._ts FROM Sessions s WHERE s._ts > @HighWaterMark"

 },

 "dataChangeDetectionPolicy": {

 "@odata.type": "#Microsoft.Azure.Search.HighWaterMarkChangeDetectionPolicy",

 "highWaterMarkColumnName": "_ts"

 },

 "dataDeletionDetectionPolicy": {

 "@odata.type": "#Microsoft.Azure.Search.SoftDeleteColumnDeletionDetectionPolicy",

 "softDeleteColumnName": "isDeleted",

 "softDeleteMarkerValue": "true"

 }

}

Response

Step 2: Create an index

POST https://[Search service name].search.windows.net/indexes?api-version=[api-version]

Content-Type: application/json

api-key: [Search service admin key]

NOTE

Figure A: Mapping between JSON Data Types and Azure Search Data Types

JSON DATA TYPEJSON DATA TYPE COMPATIBLE TARGET INDEX FIELD TYPESCOMPATIBLE TARGET INDEX FIELD TYPES

Bool Edm.Boolean, Edm.String

Numbers that look like integers Edm.Int32, Edm.Int64, Edm.String

Numbers that look like floating-points Edm.Double, Edm.String

String Edm.String

Arrays of primitive types e.g. "a", "b", "c" Collection(Edm.String)

You will receive an HTTP 201 Created response if the data source was successfully created.

Create a target Azure Search index if you don’t have one already. You can do this from the Azure Portal UI or by

using the Create Index API.

Ensure that the schema of your target index is compatible with the schema of the source JSON documents or the

output of your custom query projection.

For partitioned collections, the default document key is DocumentDB's _rid property, which gets renamed to rid in

Azure Search. Also, DocumentDB's _rid values contain characters that are invalid in Azure Search keys; therefore, the

_rid values are Base64 encoded.

file:///D:/azure-docs-pr/_site/azure/.tmp/search/search-create-index-portal.html
https://msdn.microsoft.com/library/azure/dn798941.aspx

Strings that look like dates Edm.DateTimeOffset, Edm.String

GeoJSON objects e.g. { "type": "Point", "coordinates": [long, lat
] }

Edm.GeographyPoint

Other JSON objects N/A

JSON DATA TYPEJSON DATA TYPE COMPATIBLE TARGET INDEX FIELD TYPESCOMPATIBLE TARGET INDEX FIELD TYPES

Request body example

{

 "name": "mysearchindex",

 "fields": [{

 "name": "id",

 "type": "Edm.String",

 "key": true,

 "searchable": false

 }, {

 "name": "description",

 "type": "Edm.String",

 "filterable": false,

 "sortable": false,

 "facetable": false,

 "suggestions": true

 }]

 }

Response

Step 3: Create an indexer

POST https://[Search service name].search.windows.net/indexers?api-version=[api-version]

Content-Type: application/json

api-key: [Search service admin key]

Running indexers on a schedule

The following example creates an index with an id and description field:

You will receive an HTTP 201 Created response if the index was successfully created.

You can create a new indexer within an Azure Search service by using an HTTP POST request with the following

headers.

The body of the request contains the indexer definition, which should include the following fields:

namename: Required. The name of the indexer.

dataSourceNamedataSourceName: Required. The name of an existing data source.

targetIndexNametargetIndexName: Required. The name of an existing index.

scheduleschedule : Optional. See Indexing Schedule below.

An indexer can optionally specify a schedule. If a schedule is present, the indexer will run periodically as per

schedule. Schedule has the following attributes:

intervalinterval : Required. A duration value that specifies an interval or period for indexer runs. The smallest allowed

interval is 5 minutes; the longest is one day. It must be formatted as an XSD "dayTimeDuration" value (a

restricted subset of an ISO 8601 duration value). The pattern for this is: P(nD)(T(nH)(nM)) . Examples: PT15M for

every 15 minutes, PT2H for every 2 hours.

http://www.w3.org/TR/xmlschema11-2/#dayTimeDuration

Request body example

{

 "name" : "mysearchindexer",

 "dataSourceName" : "mydocdbdatasource",

 "targetIndexName" : "mysearchindex",

 "schedule" : { "interval" : "PT1H", "startTime" : "2015-01-01T00:00:00Z" }

}

Response

Step 4: Run an indexer

POST https://[Search service name].search.windows.net/indexers/[indexer name]/run?api-version=[api-version]

api-key: [Search service admin key]

Response

Step 5: Get indexer status

GET https://[Search service name].search.windows.net/indexers/[indexer name]/status?api-version=[api-version]

api-key: [Search service admin key]

Response

star tTimestar tTime: Required. An UTC datetime that specifies when the indexer should start running.

The following example creates an indexer that copies data from the collection referenced by the myDocDbDataSource

data source to the mySearchIndex index on a schedule that starts on Jan 1, 2015 UTC and runs hourly.

You will receive an HTTP 201 Created response if the indexer was successfully created.

In addition to running periodically on a schedule, an indexer can also be invoked on demand by issuing the

following HTTP POST request:

You will receive an HTTP 202 Accepted response if the indexer was successfully invoked.

You can issue a HTTP GET request to retrieve the current status and execution history of an indexer:

You will see a HTTP 200 OK response returned along with a response body that contains information about overall

indexer health status, the last indexer invocation, as well as the history of recent indexer invocations (if present).

The response should look similar to the following:

{

 "status":"running",

 "lastResult": {

 "status":"success",

 "errorMessage":null,

 "startTime":"2014-11-26T03:37:18.853Z",

 "endTime":"2014-11-26T03:37:19.012Z",

 "errors":[],

 "itemsProcessed":11,

 "itemsFailed":0,

 "initialTrackingState":null,

 "finalTrackingState":null

 },

 "executionHistory":[{

 "status":"success",

 "errorMessage":null,

 "startTime":"2014-11-26T03:37:18.853Z",

 "endTime":"2014-11-26T03:37:19.012Z",

 "errors":[],

 "itemsProcessed":11,

 "itemsFailed":0,

 "initialTrackingState":null,

 "finalTrackingState":null

 }]

}

Next steps

Execution history contains up to the 50 most recent completed executions, which are sorted in reverse

chronological order (so the latest execution comes first in the response).

Congratulations! You have just learned how to integrate Azure DocumentDB with Azure Search using the indexer

for DocumentDB.

To learn how more about Azure DocumentDB, see the DocumentDB service page.

To learn how more about Azure Search, see the Search service page.

https://azure.microsoft.com/services/documentdb/
https://azure.microsoft.com/services/search/

Linda Wang • Iain Foulds • James Dunn • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • Sreedhar Pelluru

• Ross McAllister • mimig

Move data to and from DocumentDB using Azure
Data Factory
11/15/2016 • 9 min to read • Edit on GitHub

Contributors

NOTE

Supported versions

Sample: Copy data from DocumentDB to Azure Blob

This article outlines how you can use the Copy Activity in an Azure data factory to move data to Azure DocumentDB

from another data store and move data from DocumentDB to another data store. This article builds on the data

movement activities article, which presents a general overview of data movement with copy activity and supported

data store combinations.

The following samples show how to copy data to and from Azure DocumentDB and Azure Blob Storage. However,

data can be copied directlydirectly from any of the sources to any of the supported sinks. For more information, see the

section "Supported data stores and formats" in Move data by using Copy Activity.

Copying data from on-premises/Azure IaaS data stores to Azure DocumentDB and vice versa are supported with Data

Management Gateway version 2.1 and above.

This DocumentDB connector support copying data from/to DocumentDB single partition collection and partitioned

collection. DocDB for MongoDB is not supported.

The sample below shows:

1. A linked service of type DocumentDb.

2. A linked service of type AzureStorage.

3. An input dataset of type DocumentDbCollection.

4. An output dataset of type AzureBlob.

5. A pipeline with Copy Activity that uses DocumentDbCollectionSource and BlobSink.

The sample copies data in Azure DocumentDB to Azure Blob. The JSON properties used in these samples are

described in sections following the samples.

Azure DocumentDB linked serv ice:Azure DocumentDB linked serv ice:

https://github.com/Microsoft/azure-docs/blob/master/articles/data-factory/data-factory-azure-documentdb-connector.md
https://github.com/linda33wj
https://github.com/iainfoulds
https://github.com/Ja-Dunn
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/spelluru
https://github.com/rmca14
https://github.com/mimig1
file:///D:/azure-docs-pr/_site/azure/.tmp/data-factory/data-factory-data-movement-activities.html
file:///D:/azure-docs-pr/_site/azure/.tmp/data-factory/data-factory-data-movement-activities.html
file:///D:/azure-docs-pr/_site/azure/.tmp/data-factory/data-factory-azure-blob-connector.html
file:///D:/azure-docs-pr/_site/azure/.tmp/data-factory/data-factory-create-datasets.html
file:///D:/azure-docs-pr/_site/azure/.tmp/data-factory/data-factory-create-datasets.html
file:///D:/azure-docs-pr/_site/azure/.tmp/data-factory/data-factory-azure-blob-connector.html#azure-blob-dataset-type-properties
file:///D:/azure-docs-pr/_site/azure/.tmp/data-factory/data-factory-create-pipelines.html
file:///D:/azure-docs-pr/_site/azure/.tmp/data-factory/data-factory-azure-blob-connector.html#azure-blob-copy-activity-type-properties

{

 "name": "DocumentDbLinkedService",

 "properties": {

 "type": "DocumentDb",

 "typeProperties": {

 "connectionString": "AccountEndpoint=<EndpointUrl>;AccountKey=<AccessKey>;Database=<Database>"

 }

 }

}

{

 "name": "StorageLinkedService",

 "properties": {

 "type": "AzureStorage",

 "typeProperties": {

 "connectionString": "DefaultEndpointsProtocol=https;AccountName=<accountname>;AccountKey=<accountkey>"

 }

 }

}

{

 "name": "PersonDocumentDbTable",

 "properties": {

 "type": "DocumentDbCollection",

 "linkedServiceName": "DocumentDbLinkedService",

 "typeProperties": {

 "collectionName": "Person"

 },

 "external": true,

 "availability": {

 "frequency": "Day",

 "interval": 1

 }

 }

}

Azure Blob storage l inked serv ice:Azure Blob storage l inked serv ice:

Azure Document DB input dataset:Azure Document DB input dataset:

The sample assumes you have a collection named PersonPerson in an Azure DocumentDB database.

Setting “external”: ”true” and specifying externalData policy information the Azure Data Factory service that the

table is external to the data factory and not produced by an activity in the data factory.

Azure Blob output dataset:Azure Blob output dataset:

Data is copied to a new blob every hour with the path for the blob reflecting the specific datetime with hour

granularity.

{

 "name": "PersonBlobTableOut",

 "properties": {

 "type": "AzureBlob",

 "linkedServiceName": "StorageLinkedService",

 "typeProperties": {

 "folderPath": "docdb",

 "format": {

 "type": "TextFormat",

 "columnDelimiter": ",",

 "nullValue": "NULL"

 }

 },

 "availability": {

 "frequency": "Day",

 "interval": 1

 }

 }

}

{

 "PersonId": 2,

 "Name": {

 "First": "Jane",

 "Middle": "",

 "Last": "Doe"

 }

}

SELECT Person.PersonId, Person.Name.First AS FirstName, Person.Name.Middle as MiddleName, Person.Name.Last AS

LastName FROM Person

Sample JSON document in the Person collection in a DocumentDB database:

DocumentDB supports querying documents using a SQL like syntax over hierarchical JSON documents.

Example:

The following pipeline copies data from the Person collection in the DocumentDB database to an Azure blob. As

part of the copy activity the input and output datasets have been specified.

{

 "name": "DocDbToBlobPipeline",

 "properties": {

 "activities": [

 {

 "type": "Copy",

 "typeProperties": {

 "source": {

 "type": "DocumentDbCollectionSource",

 "query": "SELECT Person.Id, Person.Name.First AS FirstName, Person.Name.Middle as MiddleName,

Person.Name.Last AS LastName FROM Person",

 "nestingSeparator": "."

 },

 "sink": {

 "type": "BlobSink",

 "blobWriterAddHeader": true,

 "writeBatchSize": 1000,

 "writeBatchTimeout": "00:00:59"

 }

 },

 "inputs": [

 {

 "name": "PersonDocumentDbTable"

 }

],

 "outputs": [

 {

 "name": "PersonBlobTableOut"

 }

],

 "policy": {

 "concurrency": 1

 },

 "name": "CopyFromDocDbToBlob"

 }

],

 "start": "2015-04-01T00:00:00Z",

 "end": "2015-04-02T00:00:00Z"

 }

}

Sample: Copy data from Azure Blob to Azure DocumentDB

The sample below shows:

1. A linked service of type DocumentDb.

2. A linked service of type AzureStorage.

3. An input dataset of type AzureBlob.

4. An output dataset of type DocumentDbCollection.

5. A pipeline with Copy Activity that uses BlobSource and DocumentDbCollectionSink.

The sample copies data from Azure blob to Azure DocumentDB. The JSON properties used in these samples are

described in sections following the samples.

Azure Blob storage l inked serv ice:Azure Blob storage l inked serv ice:

file:///D:/azure-docs-pr/_site/azure/.tmp/data-factory/data-factory-azure-blob-connector.html
file:///D:/azure-docs-pr/_site/azure/.tmp/data-factory/data-factory-create-datasets.html
file:///D:/azure-docs-pr/_site/azure/.tmp/data-factory/data-factory-azure-blob-connector.html#azure-blob-dataset-type-properties
file:///D:/azure-docs-pr/_site/azure/.tmp/data-factory/data-factory-create-datasets.html
file:///D:/azure-docs-pr/_site/azure/.tmp/data-factory/data-factory-create-pipelines.html
file:///D:/azure-docs-pr/_site/azure/.tmp/data-factory/data-factory-azure-blob-connector.html#azure-blob-copy-activity-type-properties

{

 "name": "StorageLinkedService",

 "properties": {

 "type": "AzureStorage",

 "typeProperties": {

 "connectionString": "DefaultEndpointsProtocol=https;AccountName=<accountname>;AccountKey=<accountkey>"

 }

 }

}

{

 "name": "DocumentDbLinkedService",

 "properties": {

 "type": "DocumentDb",

 "typeProperties": {

 "connectionString": "AccountEndpoint=<EndpointUrl>;AccountKey=<AccessKey>;Database=<Database>"

 }

 }

}

{

 "name": "PersonBlobTableIn",

 "properties": {

 "structure": [

 {

 "name": "Id",

 "type": "Int"

 },

 {

 "name": "FirstName",

 "type": "String"

 },

 {

 "name": "MiddleName",

 "type": "String"

 },

 {

 "name": "LastName",

 "type": "String"

 }

],

 "type": "AzureBlob",

 "linkedServiceName": "StorageLinkedService",

 "typeProperties": {

 "fileName": "input.csv",

 "folderPath": "docdb",

 "format": {

 "type": "TextFormat",

 "columnDelimiter": ",",

 "nullValue": "NULL"

 }

 },

 "external": true,

 "availability": {

 "frequency": "Day",

 "interval": 1

 }

 }

}

Azure DocumentDB linked serv ice:Azure DocumentDB linked serv ice:

Azure Blob input dataset:Azure Blob input dataset:

{

 "name": "PersonDocumentDbTableOut",

 "properties": {

 "structure": [

 {

 "name": "Id",

 "type": "Int"

 },

 {

 "name": "Name.First",

 "type": "String"

 },

 {

 "name": "Name.Middle",

 "type": "String"

 },

 {

 "name": "Name.Last",

 "type": "String"

 }

],

 "type": "DocumentDbCollection",

 "linkedServiceName": "DocumentDbLinkedService",

 "typeProperties": {

 "collectionName": "Person"

 },

 "availability": {

 "frequency": "Day",

 "interval": 1

 }

 }

}

Azure DocumentDB output dataset:Azure DocumentDB output dataset:

The sample copies data to a collection named “Person”.

The following pipeline copies data from Azure Blob to the Person collection in the DocumentDB. As part of the copy

activity the input and output datasets have been specified.

{

 "name": "BlobToDocDbPipeline",

 "properties": {

 "activities": [

 {

 "type": "Copy",

 "typeProperties": {

 "source": {

 "type": "BlobSource"

 },

 "sink": {

 "type": "DocumentDbCollectionSink",

 "nestingSeparator": ".",

 "writeBatchSize": 2,

 "writeBatchTimeout": "00:00:00"

 }

 "translator": {

 "type": "TabularTranslator",

 "ColumnMappings": "FirstName: Name.First, MiddleName: Name.Middle, LastName: Name.Last,

BusinessEntityID: BusinessEntityID, PersonType: PersonType, NameStyle: NameStyle, Title: Title, Suffix: Suffix,

EmailPromotion: EmailPromotion, rowguid: rowguid, ModifiedDate: ModifiedDate"

 }

 },

 "inputs": [

 {

 "name": "PersonBlobTableIn"

 }

],

 "outputs": [

 {

 "name": "PersonDocumentDbTableOut"

 }

],

 "policy": {

 "concurrency": 1

 },

 "name": "CopyFromBlobToDocDb"

 }

],

 "start": "2015-04-14T00:00:00Z",

 "end": "2015-04-15T00:00:00Z"

 }

}

1,John,,Doe

{

 "Id": 1,

 "Name": {

 "First": "John",

 "Middle": null,

 "Last": "Doe"

 },

 "id": "a5e8595c-62ec-4554-a118-3940f4ff70b6"

}

If the sample blob input is as

Then the output JSON in DocumentDB will be as:

DocumentDB is a NoSQL store for JSON documents, where nested structures are allowed. Azure Data Factory

enables user to denote hierarchy via nestingSeparatornestingSeparator , which is “.” in this example. With the separator, the copy

activity will generate the “Name” object with three children elements First, Middle and Last, according to

“Name.First”, “Name.Middle” and “Name.Last” in the table definition.

Azure DocumentDB Linked Service properties

PROPERTYPROPERTY DESCRIPTIONDESCRIPTION REQUIREDREQUIRED

type The type property must be set to:
DocumentDbDocumentDb

Yes

connectionString Specify information needed to connect
to Azure DocumentDB database.

Yes

Azure DocumentDB Dataset type properties

PROPERTYPROPERTY DESCRIPTIONDESCRIPTION REQUIREDREQUIRED

collectionName Name of the DocumentDB document
collection.

Yes

{

 "name": "PersonDocumentDbTable",

 "properties": {

 "type": "DocumentDbCollection",

 "linkedServiceName": "DocumentDbLinkedService",

 "typeProperties": {

 "collectionName": "Person"

 },

 "external": true,

 "availability": {

 "frequency": "Day",

 "interval": 1

 }

 }

}

Schema by Data Factory

The following table provides description for JSON elements specific to Azure DocumentDB linked service.

For a full list of sections & properties available for defining datasets please refer to the Creating datasets article.

Sections like structure, availability, and policy of a dataset JSON are similar for all dataset types (Azure SQL, Azure

blob, Azure table, etc.).

The typeProperties section is different for each type of dataset and provides information about the location of the

data in the data store. The typeProperties section for the dataset of type DocumentDbCollectionDocumentDbCollection has the

following properties.

Example:

For schema-free data stores such as DocumentDB, the Data Factory service infers the schema in one of the

following ways:

1. If you specify the structure of data by using the structurestructure property in the dataset definition, the Data Factory

service honors this structure as the schema. In this case, if a row does not contain a value for a column, a null

value will be provided for it.

2. If you do not specify the structure of data by using the structurestructure property in the dataset definition, the Data

Factory service infers the schema by using the first row in the data. In this case, if the first row does not contain

the full schema, some columns will be missing in the result of copy operation.

file:///D:/azure-docs-pr/_site/azure/.tmp/data-factory/data-factory-create-datasets.html

 Azure DocumentDB Copy Activity type properties

PROPERTYPROPERTY DESCRIPTIONDESCRIPTION ALLOWED VALUESALLOWED VALUES REQUIREDREQUIRED

query Specify the query to read
data.

Query string supported by
DocumentDB.

Example:
SELECT
c.BusinessEntityID,
c.PersonType,
c.NameStyle, c.Title,
c.Name.First AS
FirstName, c.Name.Last
AS LastName, c.Suffix,
c.EmailPromotion FROM c
WHERE c.ModifiedDate >
\"2009-01-01T00:00:00\"

No

If not specified, the SQL
statement that is executed:
select <columns defined
in structure> from
mycollection

nestingSeparator Special character to indicate
that the document is nested

Any character.

DocumentDB is a NoSQL
store for JSON documents,
where nested structures are
allowed. Azure Data Factory
enables user to denote
hierarchy via
nestingSeparator, which is “.”
in the above examples. With
the separator, the copy
activity will generate the
“Name” object with three
children elements First,
Middle and Last, according
to “Name.First”,
“Name.Middle” and
“Name.Last” in the table
definition.

No

PROPERTYPROPERTY DESCRIPTIONDESCRIPTION ALLOWED VALUESALLOWED VALUES REQUIREDREQUIRED

Therefore, for schema-free data sources, the best practice is to specify the structure of data using the structurestructure

property.

For a full list of sections & properties available for defining activities please refer to the Creating Pipelines article.

Properties such as name, description, input and output tables, and policy are available for all types of activities.

Note:Note: The Copy Activity takes only one input and produces only one output.

Properties available in the typeProperties section of the activity on the other hand vary with each activity type and

in case of Copy activity they vary depending on the types of sources and sinks.

In case of Copy activity when source is of type DocumentDbCollectionSourceDocumentDbCollectionSource the following properties are

available in typePropertiestypeProperties section:

DocumentDbCollectionS inkDocumentDbCollectionS ink supports the following properties:

file:///D:/azure-docs-pr/_site/azure/.tmp/data-factory/data-factory-create-pipelines.html

nestingSeparator A special character in the
source column name to
indicate that nested
document is needed.

For example above:
Name.First in the output

table produces the following
JSON structure in the
DocumentDB document:

"Name": {
"First": "John"
},

Character that is used to
separate nesting levels.

Default value is . (dot).

Character that is used to
separate nesting levels.

Default value is . (dot).

writeBatchSize Number of parallel requests
to DocumentDB service to
create documents.

You can fine-tune the
performance when copying
data to/from DocumentDB
by using this property. You
can expect a better
performance when you
increase writeBatchSize
because more parallel
requests to DocumentDB
are sent. However you’ll
need to avoid throttling that
can throw the error
message: "Request rate is
large".

Throttling is decided by a
number of factors, including
size of documents, number
of terms in documents,
indexing policy of target
collection, etc. For copy
operations, you can use a
better collection (e.g. S3) to
have the most throughput
available (2,500 request
units/second).

Integer No (default: 5)

writeBatchTimeout Wait time for the operation
to complete before it times
out.

timespan

Example: “00:30:00” (30
minutes).

No

PROPERTYPROPERTY DESCRIPTIONDESCRIPTION ALLOWED VALUESALLOWED VALUES REQUIREDREQUIRED

Import/Export JSON documents

Using this DocumentDB connector, you can easily

Import JSON documents from various sources into DocumentDB, including Azure Blob, Azure Data Lake, on-

prem File System or other file-based stores supported by Azure Data Factory

Export JSON documents from DocumentDB collecton into various file-based stores

Migrate data between two DocumentDB collections as-is

Appendix

Performance and Tuning

To achieve such schema-agnostic copy, do not specify the "structure" section in input dataset or "nestingSeparator"

property on DocumentDB source/sink in copy activity. See "Specify format" section in corresponding file-based

connector topic on JSON format configuration details.

1. Question:Question: Does the Copy Activity support update of existing records?

Answer :Answer : No.

2. Question:Question: How does a retry of a copy to DocumentDB deal with already copied records?

Answer :Answer : If records have an "ID" field and the copy operation tries to insert a record with the same ID, the

copy operation throws an error.

3. Question:Question: Does Data Factory support range or hash-based data partitioning?

Answer :Answer : No.

4. Question:Question: Can I specify more than one DocumentDB collection for a table?

Answer :Answer : No. Only one collection can be specified at this time.

See Copy Activity Performance & Tuning Guide to learn about key factors that impact performance of data

movement (Copy Activity) in Azure Data Factory and various ways to optimize it.

https://azure.microsoft.com/documentation/articles/documentdb-partition-data/
file:///D:/azure-docs-pr/_site/azure/.tmp/data-factory/data-factory-copy-activity-performance.html

Jeff Stokes • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • Larry Franks • Carolyn Gronlund • v-aljenk

Stream Analytics outputs: Options for storage, analysis
11/15/2016 • 14 min to read • Edit on GitHub

Contributors

Azure Data Lake Store

Authorize an Azure Data Lake Store

When authoring a Stream Analytics job, consider how the resulting data will be consumed. How will you view the

results of the Stream Analytics job and where will you store it?

In order to enable a variety of application patterns, Azure Stream Analytics has different options for storing output

and viewing analysis results. This makes it easy to view job output and gives you flexibility in the consumption and

storage of the job output for data warehousing and other purposes. Any output configured in the job must exist

before the job is started and events start flowing. For example, if you use Blob storage as an output, the job will not

create a storage account automatically. It needs to be created by the user before the ASA job is started.

Stream Analytics supports Azure Data Lake Store. This storage enables you to store data of any size, type and

ingestion speed for operational and exploratory analytics. At this time, creation and configuration of Data Lake

Store outputs is supported only in the Azure Classic Portal. Further, Stream Analytics needs to be authorized to

access the Data Lake Store. Details on authorization and how to sign up for the Data Lake Store Preview (if needed)

are discussed in the Data Lake output article.

When Data Lake Storage is selected as an output in the Azure Management portal, you will be prompted to

authorize a connection to an existing Data Lake Store.

https://github.com/Microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-define-outputs.md
https://github.com/jeffstokes72
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/Blackmist
https://github.com/cjgronlund
https://github.com/v-aljenk
https://azure.microsoft.com/services/data-lake-store/
file:///D:/azure-docs-pr/_site/azure/.tmp/stream-analytics/stream-analytics-data-lake-output.html

Then fill out the properties for the Data Lake Store output as seen below:

PROPERTY NAMEPROPERTY NAME DESCRIPTIONDESCRIPTION

Output Alias This is a friendly name used in queries to direct the query
output to this Data Lake Store.

Account Name The name of the Data Lake Storage account where you are
sending your output. You will be presented with a drop down
list of Data Lake Store accounts to which the user logged in to
the portal has access to.

The table below lists the property names and their description needed for creating a Data Lake Store output.

Path Prefix Pattern [optional] The file path used to write your files within the specified Data
Lake Store Account.
{date}, {time}
Example 1: folder1/logs/{date}/{time}
Example 2: folder1/logs/{date}

Date Format [optional] If the date token is used in the prefix path, you can select the
date format in which your files are organized. Example:
YYYY/MM/DD

Time Format [optional] If the time token is used in the prefix path, specify the time
format in which your files are organized. Currently the only
supported value is HH.

Event Serialization Format Serialization format for output data. JSON, CSV, and Avro are
supported.

Encoding If CSV or JSON format, an encoding must be specified. UTF-8
is the only supported encoding format at this time.

Delimiter Only applicable for CSV serialization. Stream Analytics
supports a number of common delimiters for serializing CSV
data. Supported values are comma, semicolon, space, tab and
vertical bar.

Format Only applicable for JSON serialization. Line separated specifies
that the output will be formatted by having each JSON object
separated by a new line. Array specifies that the output will be
formatted as an array of JSON objects.

Renew Data Lake Store Authorization

You will need to re-authenticate your Data Lake Store account if its password has changed since your job was

created or last authenticated.

SQL Database

PROPERTY NAMEPROPERTY NAME DESCRIPTIONDESCRIPTION

Output Alias This is a friendly name used in queries to direct the query
output to this database.

Database The name of the database where you are sending your output

Azure SQL Database can be used as an output for data that is relational in nature or for applications that depend on

content being hosted in a relational database. Stream Analytics jobs will write to an existing table in an Azure SQL

Database. Note that the table schema must exactly match the fields and their types being output from your job. An

Azure SQL Data Warehouse can also be specified as an output via the SQL Database output option as well (this is a

preview feature). The table below lists the property names and their description for creating a SQL Database output.

https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/documentation/services/sql-data-warehouse/

Server Name The SQL Database server name

Username The Username which has access to write to the database

Password The password to connect to the database

Table The table name where the output will be written. The table
name is case sensitive and the schema of this table should
match exactly to the number of fields and their types being
generated by your job output.

PROPERTY NAMEPROPERTY NAME DESCRIPTIONDESCRIPTION

NOTE

Blob storage

PROPERTY NAME DESCRIPTION

Output Alias This is a friendly name used in queries to direct the query
output to this blob storage.

Storage Account The name of the storage account where you are sending your
output.

Storage Account Key The secret key associated with the storage account.

Storage Container Containers provide a logical grouping for blobs stored in the
Microsoft Azure Blob service. When you upload a blob to the
Blob service, you must specify a container for that blob.

Path Prefix Pattern [optional] The file path used to write your blobs within the specified
container.
Within the path, you may choose to use one or more
instances of the following 2 variables to specify the frequency
that blobs are written:
{date}, {time}
Example 1: cluster1/logs/{date}/{time}
Example 2: cluster1/logs/{date}

Date Format [optional] If the date token is used in the prefix path, you can select the
date format in which your files are organized. Example:
YYYY/MM/DD

Time Format [optional] If the time token is used in the prefix path, specify the time
format in which your files are organized. Currently the only
supported value is HH.

Currently the Azure SQL Database offering is supported for a job output in Stream Analytics. However, an Azure Virtual

Machine running SQL Server with a database attached is not supported. This is subject to change in future releases.

Blob storage offers a cost-effective and scalable solution for storing large amounts of unstructured data in the

cloud. For an introduction on Azure Blob storage and its usage, see the documentation at How to use Blobs.

The table below lists the property names and their description for creating a blob output.

file:///D:/azure-docs-pr/_site/azure/.tmp/storage/storage-dotnet-how-to-use-blobs.html

Event Serialization Format Serialization format for output data. JSON, CSV, and Avro are
supported.

Encoding If CSV or JSON format, an encoding must be specified. UTF-8
is the only supported encoding format at this time.

Delimiter Only applicable for CSV serialization. Stream Analytics
supports a number of common delimiters for serializing CSV
data. Supported values are comma, semicolon, space, tab and
vertical bar.

Format Only applicable for JSON serialization. Line separated specifies
that the output will be formatted by having each JSON object
separated by a new line. Array specifies that the output will be
formatted as an array of JSON objects.

Event Hub

PROPERTY NAMEPROPERTY NAME DESCRIPTIONDESCRIPTION

Output Alias This is a friendly name used in queries to direct the query
output to this Event Hub.

Service Bus Namespace A Service Bus namespace is a container for a set of messaging
entities. When you created a new Event Hub, you also created
a Service Bus namespace

Event Hub The name of your Event Hub output

Event Hub Policy Name The shared access policy, which can be created on the Event
Hub Configure tab. Each shared access policy will have a name,
permissions that you set, and access keys

Event Hub Policy Key The Shared Access key used to authenticate access to the
Service Bus namespace

Partition Key Column [optional] This column contains the partition key for Event Hub output.

Event Serialization Format Serialization format for output data. JSON, CSV, and Avro are
supported.

Encoding For CSV and JSON, UTF-8 is the only supported encoding
format at this time

Delimiter Only applicable for CSV serialization. Stream Analytics
supports a number of common delimiters for serializing data
in CSV format. Supported values are comma, semicolon, space,
tab and vertical bar.

Event Hubs is a highly scalable publish-subscribe event ingestor. It can collect millions of events per second. One

use of an Event Hub as output is when the output of a Stream Analytics job will be the input of another streaming

job.

There are a few parameters that are needed to configure Event Hub data streams as an output.

https://azure.microsoft.com/services/event-hubs/

Format Only applicable for JSON type. Line separated specifies that
the output will be formatted by having each JSON object
separated by a new line. Array specifies that the output will be
formatted as an array of JSON objects.

PROPERTY NAMEPROPERTY NAME DESCRIPTIONDESCRIPTION

Power BI

Authorize a Power BI account

Power BI can be used as an output for a Stream Analytics job to provide for a rich visualization experience of

analysis results. This capability can be used for operational dashboards, report generation and metric driven

reporting.

1. When Power BI is selected as an output in the Azure Management portal, you will be prompted to authorize

an existing Power BI User or to create a new Power BI account.

2. Create a new account if you don’t yet have one, then click Authorize Now. A screen like the following is

presented.

https://powerbi.microsoft.com/

Configure the Power BI output properties

PROPERTY NAMEPROPERTY NAME DESCRIPTIONDESCRIPTION

Output Alias This is a friendly name used in queries to direct the query
output to this PowerBI output.

Group Workspace To enable sharing data with other Power BI users you can
select groups inside your Power BI account or choose “My
Workspace” if you do not want to write to a group. Updating
an existing group requires renewing the Power BI
authentication.

Dataset Name Provide a dataset name that it is desired for the Power BI
output to use

Table Name Provide a table name under the dataset of the Power BI
output. Currently, Power BI output from Stream Analytics jobs
can only have one table in a dataset

NOTE

Renew Power BI Authorization

3. In this step, provide the work or school account for authorizing the Power BI output. If you are not already

signed up for Power BI, choose Sign up now. The work or school account you use for Power BI could be different

from the Azure subscription account which you are currently logged in with.

Once you have the Power BI account authenticated, you can configure the properties for your Power BI output. The

table below is the list of property names and their description to configure your Power BI output.

For a walk-through of configuring a Power BI output and dashboard, please see the Azure Stream Analytics &

Power BI article.

Do not explicitly create the dataset and table in the Power BI dashboard. The dataset and table will be automatically

populated when the job is started and the job starts pumping output into Power BI. Note that if the job query doesn’t

generate any results, the dataset and table will not be created. Also be aware that if Power BI already had a dataset and table

with the same name as the one provided in this Stream Analytics job, the existing data will be overwritten.

You will need to re-authenticate your Power BI account if its password has changed since your job was created or

file:///D:/azure-docs-pr/_site/azure/.tmp/stream-analytics/stream-analytics-power-bi-dashboard.html

Table Storage

last authenticated. If Multi-Factor Authentication (MFA) is configured on your Azure Active Directory (AAD) tenant

you will also need to renew Power BI authorization every 2 weeks. A symptom of this issue is no job output and an

"Authenticate user error" in the Operation Logs:

To resolve this issue, stop your running job and go to your Power BI output. Click the “Renew authorization” link,

and restart your job from the Last Stopped Time to avoid data loss.

Azure Table storage offers highly available, massively scalable storage, so that an application can automatically

file:///D:/azure-docs-pr/_site/azure/.tmp/storage/storage-introduction.html

PROPERTY NAMEPROPERTY NAME DESCRIPTIONDESCRIPTION

Output Alias This is a friendly name used in queries to direct the query
output to this table storage.

Storage Account The name of the storage account where you are sending your
output.

Storage Account Key The access key associated with the storage account.

Table Name The name of the table. The table will get created if it does not
exist.

Partition Key The name of the output column containing the partition key.
The partition key is a unique identifier for the partition within a
given table that forms the first part of an entity's primary key.
It is a string value that may be up to 1 KB in size.

Row Key The name of the output column containing the row key. The
row key is a unique identifier for an entity within a given
partition. It forms the second part of an entity’s primary key.
The row key is a string value that may be up to 1 KB in size.

Batch Size The number of records for a batch operation. Typically the
default is sufficient for most jobs, refer to the Table Batch
Operation spec for more details on modifying this setting.

Service Bus Queues

PROPERTY NAMEPROPERTY NAME DESCRIPTIONDESCRIPTION

Output Alias This is a friendly name used in queries to direct the query
output to this Service Bus Queue.

Service Bus Namespace A Service Bus namespace is a container for a set of messaging
entities.

Queue Name The name of the Service Bus Queue.

Queue Policy Name When you create a Queue, you can also create shared access
policies on the Queue Configure tab. Each shared access policy
will have a name, permissions that you set, and access keys.

scale to meet user demand. Table storage is Microsoft’s NoSQL key/attribute store which one can leverage for

structured data with less constraints on the schema. Azure Table storage can be used to store data for persistence

and efficient retrieval.

The table below lists the property names and their description for creating a table output.

Service Bus Queues offer a First In, First Out (FIFO) message delivery to one or more competing consumers.

Typically, messages are expected to be received and processed by the receivers in the temporal order in which they

were added to the queue, and each message is received and processed by only one message consumer.

The table below lists the property names and their description for creating a Queue output.

https://msdn.microsoft.com/library/microsoft.windowsazure.storage.table.tablebatchoperation.aspx
https://msdn.microsoft.com/library/azure/hh367516.aspx

Queue Policy Key The Shared Access key used to authenticate access to the
Service Bus namespace

Event Serialization Format Serialization format for output data. JSON, CSV, and Avro are
supported.

Encoding For CSV and JSON, UTF-8 is the only supported encoding
format at this time

Delimiter Only applicable for CSV serialization. Stream Analytics
supports a number of common delimiters for serializing data
in CSV format. Supported values are comma, semicolon, space,
tab and vertical bar.

Format Only applicable for JSON type. Line separated specifies that
the output will be formatted by having each JSON object
separated by a new line. Array specifies that the output will be
formatted as an array of JSON objects.

PROPERTY NAMEPROPERTY NAME DESCRIPTIONDESCRIPTION

Service Bus Topics

PROPERTY NAMEPROPERTY NAME DESCRIPTIONDESCRIPTION

Output Alias This is a friendly name used in queries to direct the query
output to this Service Bus Topic.

Service Bus Namespace A Service Bus namespace is a container for a set of messaging
entities. When you created a new Event Hub, you also created
a Service Bus namespace

Topic Name Topics are messaging entities, similar to event hubs and
queues. They're designed to collect event streams from a
number of different devices and services. When a topic is
created, it is also given a specific name. The messages sent to
a Topic will not be available unless a subscription is created, so
ensure there are one or more subscriptions under the topic

Topic Policy Name When you create a Topic, you can also create shared access
policies on the Topic Configure tab. Each shared access policy
will have a name, permissions that you set, and access keys

Topic Policy Key The Shared Access key used to authenticate access to the
Service Bus namespace

Event Serialization Format Serialization format for output data. JSON, CSV, and Avro are
supported.

Encoding If CSV or JSON format, an encoding must be specified. UTF-8
is the only supported encoding format at this time

While Service Bus Queues provide a one to one communication method from sender to receiver, Service Bus Topics

provide a one-to-many form of communication.

The table below lists the property names and their description for creating a table output.

https://msdn.microsoft.com/library/azure/hh367516.aspx

Delimiter Only applicable for CSV serialization. Stream Analytics
supports a number of common delimiters for serializing data
in CSV format. Supported values are comma, semicolon, space,
tab and vertical bar.

PROPERTY NAMEPROPERTY NAME DESCRIPTIONDESCRIPTION

DocumentDB

PROPERTY NAME DESCRIPTION

Account Name The name of the DocumentDB account. This can also be the
endpoint for the account.

Account Key The shared access key for the DocumentDB account.

Database The DocumentDB database name.

Collection Name Pattern The collection name pattern for the collections to be used. The
collection name format can be constructed using the optional
{partition} token, where partitions start from 0.
E.g. The followings are valid inputs:
MyCollection{partition}
MyCollection
Note that collections must exist before the Stream Analytics
job is started and will not be created automatically.

Partition Key The name of the field in output events used to specify the key
for partitioning output across collections.

Document ID The name of the field in output events used to specify the
primary key which insert or update operations are based on.

Get help

Next steps

Azure DocumentDB is a fully-managed NoSQL document database service that offers query and transactions over

schema-free data, predictable and reliable performance, and rapid development.

The table below lists the property names and their description for creating a DocumentDB output.

For further assistance, try our Azure Stream Analytics forum

You've been introduced to Stream Analytics, a managed service for streaming analytics on data from the Internet of

Things. To learn more about this service, see:

Get started using Azure Stream Analytics

Scale Azure Stream Analytics jobs

Azure Stream Analytics Query Language Reference

Azure Stream Analytics Management REST API Reference

https://azure.microsoft.com/services/documentdb/
https://social.msdn.microsoft.com/Forums/en-US/home?forum=AzureStreamAnalytics
file:///D:/azure-docs-pr/_site/azure/.tmp/stream-analytics/stream-analytics-get-started.html
file:///D:/azure-docs-pr/_site/azure/.tmp/stream-analytics/stream-analytics-scale-jobs.html
https://msdn.microsoft.com/library/azure/dn834998.aspx
https://msdn.microsoft.com/library/azure/dn835031.aspx

Howard S. Edidin • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • mimig

Notifications for new or changed DocumentDB
resources using Logic Apps
11/15/2016 • 16 min to read • Edit on GitHub

Contributors

Use case

How the IT department solved the problem

High-Level view of notification process

This article came about from a question I saw posted one of the Azure DocumentDB community forums. The

question was Does DocumentDB support notifications for modified resourcesDoes DocumentDB support notifications for modified resources?

I have worked with BizTalk Server for many years, and this is a very common scenario when using the WCF LOB

Adapter. So I decided to see if I could duplicate this functionality in DocumentDB for new and/or modified

documents.

This article provides an overview of the components of the change notification solution, which includes a trigger

and a Logic App. Important code snippets are provided inline and the entire solution is available on GitHub.

The following story is the use case for this article.

DocumentDB is the repository for Health Level Seven International (HL7) Fast Healthcare Interoperability Resources

(FHIR) documents. Let's assume that your DocumentDB database combined with your API and Logic App make up

an HL7 FHIR Server. A healthcare facility is storing patient data in the DocumentDB "Patients" database. There are

several collections within the patient database; Clinical, Identification, etc. Patient information falls under

identification. You have a collection named "Patient".

The Cardiology department is tracking personal heath and exercise data. Searching for new or modified Patient

records is time consuming. They asked the IT department if there was a way that they could receive a notification

for new or modified Patient records.

The IT department said that they could easily provide this. They also said that they could push the documents to

Azure Blob Storage so the Cardiology department could easily access them.

In order to create this application, the IT department decided to model it first. The nice thing about using Business

Process Model and Notation (BPMN) is that both technical and non-technical people can easily understand it. This

whole notification process is considered a business process.

1. You start with a Logic App that has a timer trigger. By default, the trigger runs every hour.

2. Next you do an HTTP POST to the Logic App.

3. The Logic App does all the work.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-change-notification.md
https://github.com/HEDIDIN
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/mimig1
https://msdn.microsoft.com/library/bb798128.aspx
file:///D:/azure-docs-pr/_site/azure/.tmp/app-service-logic/app-service-logic-what-are-logic-apps.html
https://github.com/HEDIDIN/DocDbNotifications
https://azure.microsoft.com/services/storage/

Let's take a look at what this Logic App does

Let's start with the main Logic App

If you look at the following figure there are several steps in the LogicApp workflow.

The steps are as follows:

1. You need to get the current UTC DateTime from an API App. The default value is one hour previous.

2. The UTC DateTime is converted to a Unix Timestamp format. This is the default format for timestamps in

DocumentDB.

 SELECT * FROM Patients p WHERE (p._ts >= @unixTimeStamp)

NOTE

NOTE

5. Finally, an email is sent that notifies the recipient of the number of documents found. If no documents were

found, the email body would be "0 Documents Found".

3. You POST the value to an API App, which does a DocumentDB query. The value is used in a query.

The _ts represents the TimeStamp metadata for all DocumentDB resources.

4. If there are documents found, the response body is sent to your Azure Blob Storage.

Blob storage requires an Azure Storage account. You need to provision an Azure Blob storage account and add a new

Blob named patients. For more information, see About Azure storage accounts and Get started with Azure Blob

storage.

Now that you have an idea of what the workflow does, let's take a look at how you implement it.

If you're not familiar with Logic Apps, they are available in the Azure Marketplace, and you can learn more about

them in What are Logic Apps?

file:///D:/azure-docs-pr/_site/azure/.tmp/storage/storage-create-storage-account.html
file:///D:/azure-docs-pr/_site/azure/.tmp/storage/storage-dotnet-how-to-use-blobs.html
https://portal.azure.com/
file:///D:/azure-docs-pr/_site/azure/.tmp/app-service-logic/app-service-logic-what-are-logic-apps.html

Design View of your completed Logic App

When you create a new Logic App, you are asked How would you l ike to star t?How would you l ike to star t?

When you click inside the text box, you have a choice of events. For this Logic App, select Manual - When anManual - When an

HTTP request is receivedHTTP request is received as shown below.

Let's jump ahead and look at the completed design view for the Logic App, which is named DocDB.

When editing the actions in the Logic App Designer, you have the option of selecting OutputsOutputs from the HTTP

Request or from the previous action as shown in the sendMail action below.

Before each action in your workflow, you can make a decision; Add an actionAdd an action or Add a conditionAdd a condition as shown in

the following figure.

If you select Add a conditionAdd a condition , you are presented with a form, as shown in the following figure, to enter your logic.

This is in essence, a business rule. If you click inside a field, you have a choice of selecting parameters from the

previous action. You can also enter the values directly.

NOTE

 "$schema": "https://schema.management.azure.com/providers/Microsoft.Logic/schemas/2015-08-01-

preview/workflowdefinition.json#",

 "actions": {

 "Conversion": {

 "conditions": [

 {

 "dependsOn": "GetUtcDate"

 }

],

 "inputs": {

 "method": "post",

 "queries": {

 "currentdateTime": "@{body('GetUtcDate')}"

 },

 "uri": "https://docdbnotificationapi-debug.azurewebsites.net/api/Conversion"

 },

 "metadata": {

 "apiDefinitionUrl": "https://docdbnotificationapi-debug.azurewebsites.net/swagger/docs/v1",

 "swaggerSource": "custom"

 },

 "type": "Http"

 },

 "Createfile": {

 "conditions": [

 {

 "expression": "@greater(length(body('GetDocuments')), 0)"

 },

 {

 "dependsOn": "GetDocuments"

 }

],

 "inputs": {

 "body": "@body('GetDocuments')",

 "host": {

 "api": {

 "runtimeUrl": "https://logic-apis-westus.azure-apim.net/apim/azureblob"

 },

You also have the capability to enter everything in Code View.

Let's take a look at the completed Logic App in code view.

 },

 "connection": {

 "name": "@parameters('$connections')['azureblob']['connectionId']"

 }

 },

 "method": "post",

 "path": "/datasets/default/files",

 "queries": {

 "folderPath": "/patients",

 "name": "Patient_@{guid()}.json"

 }

 },

 "type": "ApiConnection"

 },

 "GetDocuments": {

 "conditions": [

 {

 "dependsOn": "Conversion"

 }

],

 "inputs": {

 "method": "post",

 "queries": {

 "unixTimeStamp": "@body('Conversion')"

 },

 "uri": "https://docdbnotificationapi-debug.azurewebsites.net/api/Patient"

 },

 "metadata": {

 "apiDefinitionUrl": "https://docdbnotificationapi-debug.azurewebsites.net/swagger/docs/v1",

 "swaggerSource": "custom"

 },

 "type": "Http"

 },

 "GetUtcDate": {

 "conditions": [],

 "inputs": {

 "method": "get",

 "queries": {

 "hoursBack": "@{int(triggerBody()['GetUtcDate_HoursBack'])}"

 },

 "uri": "https://docdbnotificationapi-debug.azurewebsites.net/api/Authorization"

 },

 "metadata": {

 "apiDefinitionUrl": "https://docdbnotificationapi-debug.azurewebsites.net/swagger/docs/v1",

 "swaggerSource": "custom"

 },

 "type": "Http"

 },

 "sendMail": {

 "conditions": [

 {

 "dependsOn": "GetDocuments"

 }

],

 "inputs": {

 "body": "api_user=@{triggerBody()['sendgridUsername']}&api_key=@{triggerBody()

['sendgridPassword']}&from=@{parameters('fromAddress')}&to=@{triggerBody()['EmailTo']}&subject=@{triggerBody()

['Subject']}&text=@{int(length(body('GetDocuments')))} Documents Found",

 "headers": {

 "Content-type": "application/x-www-form-urlencoded"

 },

 "method": "POST",

 "uri": "https://api.sendgrid.com/api/mail.send.json"

 },

 "type": "Http"

 }

 },

 "contentVersion": "1.0.0.0",

 "outputs": {

 "Results": {

 "Results": {

 "type": "String",

 "value": "@{int(length(body('GetDocuments')))} Records Found"

 }

 },

 "parameters": {

 "$connections": {

 "defaultValue": {},

 "type": "Object"

 },

 "fromAddress": {

 "defaultValue": "user@msn.com",

 "type": "String"

 },

 "toAddress": {

 "defaultValue": "XXXXX@XXXXXXX.net",

 "type": "String"

 }

 },

 "triggers": {

 "manual": {

 "inputs": {

 "schema": {

 "properties": {},

 "required": [],

 "type": "object"

 }

 },

 "type": "Manual"

 }

 =@{triggerBody()['Subject']}

NOTE

If you are not familiar with what the different sections in the code represents, you can view the Logic App Workflow

Definition Language documentation.

For this workflow you are using an HTTP Webhook Trigger. If you look at the code above, you will see parameters

like the following example.

The triggerBody() represents the parameters that are included in the body of an REST POST to the Logic App REST

API. The ()['Subject'] represents the field. All these parameters make up the JSON formatted body.

By using a Web hook, you can have full access to the header and body of the trigger's request. In this application you want

the body.

As mentioned previously, you can use the designer to assign parameters or do it in code view. If you do it in code

view, then you define which properties require a value as shown in the following code sample.

http://aka.ms/logicappsdocs
https://sendgrid.com/blog/whats-webhook/

 "triggers": {

 "manual": {

 "inputs": {

 "schema": {

 "properties": {

 "Subject": {

 "type" : "String"

 }

 },

 "required": [

 "Subject"

],

 "type": "object"

 }

 },

 "type": "Manual"

 }

 }

Actions

GetUTCDate

 "GetUtcDate": {

 "conditions": [],

 "inputs": {

 "method": "get",

 "queries": {

 "hoursBack": "@{int(triggerBody()['GetUtcDate_HoursBack'])}"

 },

 "uri": "https://docdbnotificationapi-debug.azurewebsites.net/api/Authorization"

 },

 "metadata": {

 "apiDefinitionUrl": "https://docdbnotificationapi-debug.azurewebsites.net/swagger/docs/v1"

 },

 "type": "Http"

 },

What you are doing is creating a JSON schema that will be passed in from the body of the HTTP POST. To fire your

trigger, you will need a Callback URL. You will learn how to generate it later in the tutorial.

Let's see what each action in our Logic App does.

Designer ViewDesigner View

Code ViewCode View

This HTTP action performs a GET operation. It calls the API APP GetUtcDate method. The Uri uses the

'GetUtcDate_HoursBack' property passed into the Trigger body. The 'GetUtcDate_HoursBack' value is set in the first

Logic App. You will learn more about the Trigger Logic App later in the tutorial.

Operations

 {

 "uri": "https://docdbnotificationapi-debug.azurewebsites.net/api/Authorization",

 "method": "get",

 "queries": {

 "hoursBack": "24"

 }

 }

 {

 "statusCode": 200,

 "headers": {

 "pragma": "no-cache",

 "cache-Control": "no-cache",

 "date": "Fri, 26 Feb 2016 15:47:33 GMT",

 "server": "Microsoft-IIS/8.0",

 "x-AspNet-Version": "4.0.30319",

 "x-Powered-By": "ASP.NET"

 },

 "body": "Fri, 15 Jan 2016 23:47:33 GMT"

 }

Conversion
D e s i g n e r V i e w

C o d e V i e w

This action calls your API App to return the UTC Date string value.

RequestRequest

ResponseResponse

The next step is to convert the UTC DateTime value to the Unix TimeStamp, which is a .NET double type.

 "Conversion": {

 "conditions": [

 {

 "dependsOn": "GetUtcDate"

 }

],

 "inputs": {

 "method": "post",

 "queries": {

 "currentDateTime": "@{body('GetUtcDate')}"

 },

 "uri": "https://docdbnotificationapi-debug.azurewebsites.net/api/Conversion"

 },

 "metadata": {

 "apiDefinitionUrl": "https://docdbnotificationapi-debug.azurewebsites.net/swagger/docs/v1"

 },

 "type": "Http"

 },

Operations
R e q u e s t

 {

 "uri": "https://docdbnotificationapi-debug.azurewebsites.net/api/Conversion",

 "method": "post",

 "queries": {

 "currentDateTime": "Fri, 15 Jan 2016 23:47:33 GMT"

 }

 }

R e s p o n s e

 {

 "statusCode": 200,

 "headers": {

 "pragma": "no-cache",

 "cache-Control": "no-cache",

 "date": "Fri, 26 Feb 2016 15:47:33 GMT",

 "server": "Microsoft-IIS/8.0",

 "x-AspNet-Version": "4.0.30319",

 "x-Powered-By": "ASP.NET"

 },

 "body": 1452901653

 }

GetDocuments
D e s i g n e r V i e w

In this step you pass in the value returned from the GetUTCDate. There is a dependsOn condition, which means that

the GetUTCDate action must complete successfully. If not, then this action is skipped.

This action calls your API App to handle the conversion.

In the next action, you will do a POST operation to our API App.

C o d e V i e w

 "GetDocuments": {

 "conditions": [

 {

 "dependsOn": "Conversion"

 }

],

 "inputs": {

 "method": "post",

 "queries": {

 "unixTimeStamp": "@{body('Conversion')}"

 },

 "uri": "https://docdbnotificationapi-debug.azurewebsites.net/api/Patient"

 },

 "metadata": {

 "apiDefinitionUrl": "https://docdbnotificationapi-debug.azurewebsites.net/swagger/docs/v1"

 },

 "type": "Http"

 },

 unixTimeStamp=@{body('Conversion')}

Operations
R e q u e s t

 {

 "uri": "https://docdbnotificationapi-debug.azurewebsites.net/api/Patient",

 "method": "post",

 "queries": {

 "unixTimeStamp": "1452901653"

 }

 }

R e s p o n s e

For the GetDocuments action you are going to pass in the response body from the Conversion action. This is a

parameter in the Uri:

The QueryDocuments action does a HTTP POST operation to the API App.

The method called is QueryForNewPatientDocumentsQueryForNewPatientDocuments .

 {

 "statusCode": 200,

 "headers": {

 "pragma": "no-cache",

 "cache-Control": "no-cache",

 "date": "Fri, 26 Feb 2016 15:47:35 GMT",

 "server": "Microsoft-IIS/8.0",

 "x-AspNet-Version": "4.0.30319",

 "x-Powered-By": "ASP.NET"

 },

 "body": [

 {

 "id": "xcda",

 "_rid": "vCYLAP2k6gAXAAAAAAAAAA==",

 "_self": "dbs/vCYLAA==/colls/vCYLAP2k6gA=/docs/vCYLAP2k6gAXAAAAAAAAAA==/",

 "_ts": 1454874620,

 "_etag": "\"00007d01-0000-0000-0000-56b79ffc0000\"",

 "resourceType": "Patient",

 "text": {

 "status": "generated",

 "div": "<div>\n \n <p>Henry Levin the 7th</p>\n \n </div>"

 },

 "identifier": [

 {

 "use": "usual",

 "type": {

 "coding": [

 {

 "system": "http://hl7.org/fhir/v2/0203",

 "code": "MR"

 }

]

 },

 "system": "urn:oid:2.16.840.1.113883.19.5",

 "value": "12345"

 }

],

 "active": true,

 "name": [

 {

 "family": [

 "Levin"

],

 "given": [

 "Henry"

]

 }

],

 "gender": "male",

 "birthDate": "1932-09-24",

 "managingOrganization": {

 "reference": "Organization/2.16.840.1.113883.19.5",

 "display": "Good Health Clinic"

 }

 },

NOTE

Create File

The next action is to save the documents to Azure Blog storage.

Blob storage requires an Azure Storage account. You need to provision an Azure Blob storage account and add a new Blob

named patients. For more information, see Get started with Azure Blob storage.

https://azure.microsoft.com/services/storage/
file:///D:/azure-docs-pr/_site/azure/.tmp/storage/storage-dotnet-how-to-use-blobs.html

D e s i g n e r V i e w

C o d e V i e w

 {

 "host": {

 "api": {

 "runtimeUrl": "https://logic-apis-westus.azure-apim.net/apim/azureblob"

 },

 "connection": {

 "name": "subscriptions/fxxxxxc079-4e5d-b002-xxxxxxxxxx/resourceGroups/Api-Default-Central-

US/providers/Microsoft.Web/connections/azureblob"

 }

 },

 "method": "post",

 "path": "/datasets/default/files",

 "queries": {

 "folderPath": "/patients",

 "name": "Patient_17513174-e61d-4b56-88cb-5cf383db4430.json"

 },

 "body": [

 {

 "id": "xcda",

 "_rid": "vCYLAP2k6gAXAAAAAAAAAA==",

 "_self": "dbs/vCYLAA==/colls/vCYLAP2k6gA=/docs/vCYLAP2k6gAXAAAAAAAAAA==/",

 "_ts": 1454874620,

 "_etag": "\"00007d01-0000-0000-0000-56b79ffc0000\"",

 "resourceType": "Patient",

 "text": {

 "status": "generated",

 "div": "<div>\n \n <p>Henry Levin the 7th</p>\n \n </div>"

 },

 "identifier": [

 {

 "use": "usual",

 "type": {

 "coding": [

 {

 "system": "http://hl7.org/fhir/v2/0203",

 "code": "MR"

 }

]

 },

 "system": "urn:oid:2.16.840.1.113883.19.5",

 "value": "12345"

 }

],

 "active": true,

 "name": [

 {

 "family": [

 "Levin"

],

 "given": [

 "Henry"

]

 }

],

 "gender": "male",

 "birthDate": "1932-09-24",

 "managingOrganization": {

 "reference": "Organization/2.16.840.1.113883.19.5",

 "display": "Good Health Clinic"

 }

 },

The code is generated from action in the designer. You don't have to modify the code.

If you are not familiar with using the Azure Blob API, see Get started with the Azure blob storage API.

file:///D:/azure-docs-pr/_site/azure/.tmp/connectors/connectors-create-api-azureblobstorage.html

Operations
R e q u e s t

 "host": {

 "api": {

 "runtimeUrl": "https://logic-apis-westus.azure-apim.net/apim/azureblob"

 },

 "connection": {

 "name": "subscriptions/fxxxxxc079-4e5d-b002-xxxxxxxxxx/resourceGroups/Api-Default-Central-

US/providers/Microsoft.Web/connections/azureblob"

 }

 },

 "method": "post",

 "path": "/datasets/default/files",

 "queries": {

 "folderPath": "/patients",

 "name": "Patient_17513174-e61d-4b56-88cb-5cf383db4430.json"

 },

 "body": [

 {

 "id": "xcda",

 "_rid": "vCYLAP2k6gAXAAAAAAAAAA==",

 "_self": "dbs/vCYLAA==/colls/vCYLAP2k6gA=/docs/vCYLAP2k6gAXAAAAAAAAAA==/",

 "_ts": 1454874620,

 "_etag": "\"00007d01-0000-0000-0000-56b79ffc0000\"",

 "resourceType": "Patient",

 "text": {

 "status": "generated",

 "div": "<div>\n \n <p>Henry Levin the 7th</p>\n \n </div>"

 },

 "identifier": [

 {

 "use": "usual",

 "type": {

 "coding": [

 {

 "system": "http://hl7.org/fhir/v2/0203",

 "code": "MR"

 }

]

 },

 "system": "urn:oid:2.16.840.1.113883.19.5",

 "value": "12345"

 }

],

 "active": true,

 "name": [

 {

 "family": [

 "Levin"

],

 "given": [

 "Henry"

]

 }

],

 "gender": "male",

 "birthDate": "1932-09-24",

 "managingOrganization": {

 "reference": "Organization/2.16.840.1.113883.19.5",

 "display": "Good Health Clinic"

 }

 },….

R e s p o n s e

 {

 "statusCode": 200,

 "headers": {

 "pragma": "no-cache",

 "x-ms-request-id": "2b2f7c57-2623-4d71-8e53-45c26b30ea9d",

 "cache-Control": "no-cache",

 "date": "Fri, 26 Feb 2016 15:47:36 GMT",

 "set-Cookie":

"ARRAffinity=29e552cea7db23196f7ffa644003eaaf39bc8eb6dd555511f669d13ab7424faf;Path=/;Domain=127.0.0.1",

 "server": "Microsoft-HTTPAPI/2.0",

 "x-AspNet-Version": "4.0.30319",

 "x-Powered-By": "ASP.NET"

 },

 "body": {

 "Id": "0B0nBzHyMV-_NRGRDcDNMSFAxWFE",

 "Name": "Patient_47a2a0dc-640d-4f01-be38-c74690d085cb.json",

 "DisplayName": "Patient_47a2a0dc-640d-4f01-be38-c74690d085cb.json",

 "Path": "/Patient/Patient_47a2a0dc-640d-4f01-be38-c74690d085cb.json",

 "LastModified": "2016-02-26T15:47:36.215Z",

 "Size": 65647,

 "MediaType": "application/octet-stream",

 "IsFolder": false,

 "ETag": "\"c-g_a-1OtaH-kNQ4WBoXLp3Zv9s/MTQ1NjUwMTY1NjIxNQ\"",

 "FileLocator": "0B0nBzHyMV-_NRGRDcDNMSFAxWFE"

 }

 }

sendEmail
D e s i g n e r V i e w

C o d e V i e w

Your last step is to send an email notification

 "sendMail": {

 "conditions": [

 {

 "dependsOn": "GetDocuments"

 }

],

 "inputs": {

 "body": "api_user=@{triggerBody()['sendgridUsername']}&api_key=@{triggerBody()

['sendgridPassword']}&from=@{parameters('fromAddress')}&to=@{triggerBody()['EmailTo']}&subject=@{triggerBody()

['Subject']}&text=@{int(length(body('GetDocuments')))} Documents Found",

 "headers": {

 "Content-type": "application/x-www-form-urlencoded"

 },

 "method": "POST",

 "uri": "https://api.sendgrid.com/api/mail.send.json"

 },

 "type": "Http"

 }

 },

 "sendgridPassword": {

 "type": "SecureString"

 },

 "sendgridUsername": {

 "type": "String"

 }

 In addition, other parameters are static values set in the Parameters section of the Logic App. These

are:

 },

 "toAddress": {

 "defaultValue": "XXXX@XXXX.com",

 "type": "String"

 },

 "fromAddress": {

 "defaultValue": "XXX@msn.com",

 "type": "String"

 },

 "emailBody": {

 "defaultValue": "@{string(concat(int(length(actions('QueryDocuments').outputs.body)) Records

Found),'/n', actions('QueryDocuments').outputs.body)}",

 "type": "String"

 },

Operations
R e q u e s t

In this action you send an email notification. You are using SendGrid.

The code for this was generated using a template for Logic App and SendGrid that is in the 101-logic-app-sendgrid

Github repository.

The HTTP operation is a POST.

The authorization parameters are in the trigger properties

The emailBody is concatenating the number of documents returned from the query, which can be "0" or more,

along with, "Records Found". The rest of the parameters are set from the Trigger parameters.

This action depends on the GetDocumentsGetDocuments action.

https://sendgrid.com/marketing/sendgrid-services?cvosrc=PPC.Bing.sendgrib&cvo_cid=SendGrid - US - Brand - &mc=Paid Search&mcd=BingAds&keyword=sendgrib&network=o&matchtype=e&mobile=&content=&search=1&utm_source=bing&utm_medium=cpc&utm_term=%5Bsendgrib%5D&utm_content=%21acq%21v2%2134335083397-8303227637-1649139544&utm_campaign=SendGrid+-+US+-+Brand+-+%28English%29
https://github.com/Azure/azure-quickstart-templates/tree/master/101-logic-app-sendgrid

 {

 "uri": "https://api.sendgrid.com/api/mail.send.json",

 "method": "POST",

 "headers": {

 "Content-type": "application/x-www-form-urlencoded"

 },

 "body": "api_user=azureuser@azure.com&api_key=Biz@Talk&from=user@msn.com&to=XXXX@XXXX.com&subject=New

Patients&text=37 Documents Found"

 }

R e s p o n s e

 {

 "statusCode": 200,

 "headers": {

 "connection": "keep-alive",

 "x-Frame-Options": "DENY,DENY",

 "access-Control-Allow-Origin": "https://sendgrid.com",

 "date": "Fri, 26 Feb 2016 15:47:35 GMT",

 "server": "nginx"

 },

 "body": {

 "message": "success"

 }

 }

 "outputs": {

 "Results": {

 "type": "String",

 "value": "@{int(length(actions('QueryDocuments').outputs.body))} Records Found"

 }

Lastly you want to be able to see the results from your Logic App on the Azure Portal. To do that, you add a

parameter to the outputs section.

This returns the same value that is sent in the email body. The following figure shows an example where "29

Records Found".

Metrics

You can configure monitoring for the main Logic App in the portal. This enables you to view the Run Latency and

other events as show in the following figure.

DocDb Trigger

This Logic App is the trigger that starts the workflow on your main Logic App.

The following figure shows the Designer View.

 {

 "$schema": "https://schema.management.azure.com/providers/Microsoft.Logic/schemas/2015-08-01-

preview/workflowdefinition.json#",

 "actions": {

 "Http": {

 "conditions": [],

 "inputs": {

 "body": {

 "EmailTo": "XXXXXX@XXXXX.net",

 "GetUtcDate_HoursBack": "24",

 "Subject": "New Patients",

 "sendgridPassword": "********",

 "sendgridUsername": "azureuser@azure.com"

 },

 "method": "POST",

 "uri": "https://prod-

01.westus.logic.azure.com:443/workflows/12a1de57e48845bc9ce7a247dfabc887/triggers/manual/run?api-version=2015-08-

01-preview&sp=%2Ftriggers%2Fmanual%2Frun&sv=1.0&sig=ObTlihr529ATIuvuG-dhxOgBL4JZjItrvPQ8PV6973c"

 },

 "type": "Http"

 }

 },

 "contentVersion": "1.0.0.0",

 "outputs": {

 "Results": {

 "type": "String",

 "value": "@{body('Http')['status']}"

 }

 },

 "parameters": {},

 "triggers": {

 "recurrence": {

 "recurrence": {

 "frequency": "Hour",

 "interval": 24

 },

 "type": "Recurrence"

 }

 }

 }

Operations
R e q u e s t

 {

 "uri": "https://prod-

01.westus.logic.azure.com:443/workflows/12a1de57e48845bc9ce7a247dfabc887/triggers/manual/run?api-version=2015-08-

01-preview&sp=%2Ftriggers%2Fmanual%2Frun&sv=1.0&sig=ObTlihr529ATIuvuG-dhxOgBL4JZjItrvPQ8PV6973c",

 "method": "POST",

 "body": {

 "EmailTo": "XXXXXX@XXXXX.net",

 "GetUtcDate_HoursBack": "24",

 "Subject": "New Patients",

 "sendgridPassword": "********",

 "sendgridUsername": "azureuser@azure.com"

 }

 }

R e s p o n s e

The Trigger is set for a recurrence of twenty-four hours. The Action is an HTTP POST that uses the Callback URL for

the main Logic App. The body contains the parameters that are specified in the JSON Schema.

 {

 "statusCode": 202,

 "headers": {

 "pragma": "no-cache",

 "x-ms-ratelimit-remaining-workflow-writes": "7486",

 "x-ms-ratelimit-burst-remaining-workflow-writes": "1248",

 "x-ms-request-id": "westus:2d440a39-8ba5-4a9c-92a6-f959b8d2357f",

 "cache-Control": "no-cache",

 "date": "Thu, 25 Feb 2016 21:01:06 GMT"

 }

 }

DocDBNotificationApi

DocDBNotificationApi Operations

NOTE

GetUtcDate

Now let's look at the API App.

Although there are several operations in the app, you are only going to use three.

GetUtcDate

ConvertToTimeStamp

QueryForNewPatientDocuments

Let's take a look at the Swagger documentation

To allow you to call the operations externally, you need to add a CORS allowed origin value of "*" (without quotes) in the

settings of your API App as shown in the following figure.

ConvertToTimeStamp

QueryForNewPatientDocuments

GetUtcDate

Let's take a look at the code behind this operation.

 /// <summary>

 /// Gets the current UTC Date value

 /// </summary>

 /// <returns></returns>

 [H ttpGet]

 [Metadata("GetUtcDate", "Gets the current UTC Date value minus the Hours Back")]

 [SwaggerOperation("GetUtcDate")]

 [SwaggerResponse(HttpStatusCode.OK, type: typeof (string))]

 [SwaggerResponse(HttpStatusCode.InternalServerError, "Internal Server Operation Error")]

 public string GetUtcDate(

 [Metadata("Hours Back", "How many hours back from the current Date Time")] int hoursBack)

 {

 return DateTime.UtcNow.AddHours(-hoursBack).ToString("r");

 }

ConvertToTimeStamp

 /// <summary>

 /// Converts DateTime to double

 /// </summary>

 /// <param name="currentdateTime"></param>

 /// <returns></returns>

 [Metadata("Converts Universal DateTime to number")]

 [SwaggerResponse(HttpStatusCode.OK, null, typeof (double))]

 [SwaggerResponse(HttpStatusCode.BadRequest, "DateTime is invalid")]

 [SwaggerResponse(HttpStatusCode.InternalServerError)]

 [SwaggerOperation(nameof(ConvertToTimestamp))]

 public double ConvertToTimestamp(

 [Metadata("currentdateTime", "DateTime value to convert")] string currentdateTime)

 {

 double result;

 try

 {

 var uncoded = HttpContext.Current.Server.UrlDecode(currentdateTime);

 var newDateTime = DateTime.Parse(uncoded);

 //create Timespan by subtracting the value provided from the Unix Epoch

 var span = newDateTime - new DateTime(1970, 1, 1, 0, 0, 0, 0).ToLocalTime();

 //return the total seconds (which is a UNIX timestamp)

 result = span.TotalSeconds;

 }

 catch (Exception e)

 {

 throw new Exception("unable to convert to Timestamp", e.InnerException);

 }

 return result;

 }

QueryForNewPatientDocuments

This operation simply returns the returns the current UTC DateTime minus the HoursBack value.

This operation converts the response from the GetUtcDate operation to a double value.

 /// <summary>

 /// Query for new Patient Documents

 /// </summary>

 /// <param name="unixTimeStamp"></param>

 /// <returns>IList</returns>

 [Metadata("QueryForNewDocuments",

 "Query for new Documents where the Timestamp is greater than or equal to the DateTime value in the

query parameters."

)]

 [SwaggerOperation("QueryForNewDocuments")]

 [SwaggerResponse(HttpStatusCode.OK, type: typeof (Task<IList<Document>>))]

 [SwaggerResponse(HttpStatusCode.BadRequest, "The syntax of the SQL Statement is incorrect")]

 [SwaggerResponse(HttpStatusCode.NotFound, "No Documents were found")]

 [SwaggerResponse(HttpStatusCode.InternalServerError, "Internal Server Operation Error")]

 // ReSharper disable once ConsiderUsingAsyncSuffix

 public IList<Document> QueryForNewPatientDocuments(

 [Metadata("UnixTimeStamp", "The DateTime value used to search from")] double unixTimeStamp)

 {

 var context = new DocumentDbContext();

 var filterQuery = string.Format(InvariantCulture, "SELECT * FROM Patient p WHERE p._ts >= {0}",

 unixTimeStamp);

 var options = new FeedOptions {MaxItemCount = -1};

 var collectionLink = UriFactory.CreateDocumentCollectionUri(DocumentDbContext.DatabaseId,

 DocumentDbContext.CollectionId);

 var response =

 context.Client.CreateDocumentQuery<Document>(collectionLink, filterQuery,

options).AsEnumerable();

 return response.ToList();

 }

 CreateDocumentQuery<Document>(collectionLink, filterQuery, options).AsEnumerable();

CallbackURL

This operation uses the DocumentDB .NET SDK to create a document query.

The response from the ConvertToTimeStamp operation (unixTimeStamp) is passed in. The operation returns a List

of documents, IList<Document> .

Previously we talked about the CallbackURL. In order to start the workflow in your main Logic App, you will need to

call it using the CallbackURL.

To start off, you will need your Azure AD Token. It can be difficult to get this token. I was looking for an easy

method and Jeff Hollan, who is an Azure Logic App program manager, recommended using the armclient in

PowerShell. You can install it following the directions provided.

The operations you want to use are Login and Call ARM API.

Login: You use the same credentials for logging in to the Azure Portal.

The Call ARM Api operation is the one that will generate your CallBackURL.

In PowerShell, you call it as follows:

http://blog.davidebbo.com/2015/01/azure-resource-manager-client.html

 ArmClient.exe post https://management.azure.com/subscriptions/[YOUR SUBSCRIPTION ID/resourcegroups/[YOUR

RESOURCE GROUP]/providers/Microsoft.Logic/workflows/[YOUR LOGIC APP NAME/triggers/manual/listcallbackurl?api-

version=2015-08-01-preview

 https://prod-02.westus.logic.azure.com:443/workflows/12a1de57e48845bc9ce7a247dfabc887/triggers/manual/run?

api-version=2015-08-01-prevaiew&sp=%2Ftriggers%2Fmanual%2Frun&sv=1.0&sig=XXXXXXXXXXXXXXXXXXX

PARAMETERPARAMETER DESCRIPTIONDESCRIPTION

GetUtcDate_HoursBack Used to set the number of hours for the search start date

sendgridUsername Used to set the number of hours for the search start date

sendgridPassword The user name for Send Grid email

EmailTo The email address that will receive the email notification

Subject The Subject for the email

Viewing the patient data in the Azure Blob service

Your result should look like this:

You can use a tool like postman to test you main Logic App as shown in the following figure.

The following table lists the Trigger parameters that make up the body of the DocDB Trigger Logic App.

Go to your Azure Storage account, and select Blobs under services as shown in the following figure.

http://www.getpostman.com/

You will be able to view the Patient blob file information as shown below.

Summary

Next steps

In this walkthrough, you've learned the following:

It is possible to implement notifications in DocumentDB.

By using Logic Apps, you can automate the process.

By using Logic Apps, you can reduce the time it takes to deliver an application.

By using HTTP you can easy consume an API App within a Logic App.

You can easily create a CallBackURL that replaces the HTTP Listener.

You can easily create custom workflows with Logic Apps Designer.

The key is to plan ahead and model your workflow.

Please download and use the Logic App code provided on Github. I invite you to build on the application and

submit changes to the repo.

To learn more about DocumentDB, visit the Learning Path.

https://github.com/HEDIDIN/DocDbNotifications
https://azure.microsoft.com/documentation/learning-paths/documentdb/

Larry Franks • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • Andy Pasic

Process vehicle sensor data from Azure Event Hubs
using Apache Storm on HDInsight
11/15/2016 • 2 min to read • Edit on GitHub

Contributors

Overview

Learn how to process vehicle sensor data from Azure Event Hubs using Apache Storm on HDInsight. This example

reads sensor data from Azure Event Hubs, enriches the data by referencing data stored in Azure DocumentDB, and

finally store the data into Azure Storage using the Hadoop File System (HDFS).

Adding sensors to vehicles allows you to predict equipment problems based on historical data trends, as well as

make improvements to future versions based on usage pattern analysis. While traditional MapReduce batch

processing can be used for this analysis, you must be able to quickly and efficiently load the data from all vehicles

into Hadoop before MapReduce processing can occur. Additionally, you may wish to do analysis for critical failure

paths (engine temperature, brakes, etc.) in real time.

https://github.com/Microsoft/azure-docs/blob/master/articles/hdinsight/hdinsight-storm-iot-eventhub-documentdb.md
https://github.com/Blackmist
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/v-anpasi

Solution

NOTE

Implementation

Azure Event Hubs are built to handle the massive volume of data generated by sensors, and Apache Storm on

HDInsight can be used to load and process the data before storing it into HDFS (backed by Azure Storage) for

additional MapReduce processing.

Telemetry data for engine temperature, ambient temperature, and vehicle speed is recorded by sensors, then sent

to Event Hubs along with the car's Vehicle Identification Number (VIN) and a time stamp. From there, a Storm

Topology running on an Apache Storm on HDInsight cluster reads the data, processes it, and stores it into HDFS.

During processing, the VIN is used to retrieve model information from Azure DocumentDB. This is added to the

data stream before it is stored.

The components used in the Storm Topology are:

EventHubSpoutEventHubSpout - reads data from Azure Event Hubs

TypeConvers ionBoltTypeConvers ionBolt - converts the JSON string from Event Hubs into a tuple containing the individual data

values for engine temperature, ambient temperature, speed, VIN, and timestamp

DataReferencBoltDataReferencBolt - looks up the vehicle model from DocumentDB using the VIN

WasbStoreBoltWasbStoreBolt - stores the data to HDFS (Azure Storage)

The following is a diagram of this solution:

This is a simplified diagram, and each component in the solution may have multiple instances. For example, the multiple

instances of each component in the topology are distributed across the nodes in the Storm on HDInsight cluster.

A complete, automated solution for this scenario is available as part of the HDInsight-Storm-Examples repository

on GitHub. To use this example, follow the steps in the IoTExample README.MD.

https://github.com/hdinsight/hdinsight-storm-examples
https://github.com/hdinsight/hdinsight-storm-examples/blob/master/IotExample/README.md

Next Steps

For more example Storm topologies, see Example topologies for Storm on HDInsight.

file:///D:/azure-docs-pr/_site/azure/.tmp/hdinsight/hdinsight-storm-example-topology.html

Han Wong • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • mimig • v-aljenk

Power BI tutorial for DocumentDB: Visualize data
using the Power BI connector
11/15/2016 • 9 min to read • Edit on GitHub

Contributors

Prerequisites

Let's get started

PowerBI.com is an online service where you can create and share dashboards and reports with data that's

important to you and your organization. Power BI Desktop is a dedicated report authoring tool that enables you to

retrieve data from various data sources, merge and transform the data, create powerful reports and visualizations,

and publish the reports to Power BI. With the latest version of Power BI Desktop, you can now connect to your

DocumentDB account via the DocumentDB connector for Power BI.

In this Power BI tutorial, we walk through the steps to connect to a DocumentDB account in Power BI Desktop,

navigate to a collection where we want to extract the data using the Navigator, transform JSON data into tabular

format using Power BI Desktop Query Editor, and build and publish a report to PowerBI.com.

After completing this Power BI tutorial, you'll be able to answer the following questions:

How can I build reports with data from DocumentDB using Power BI Desktop?

How can I connect to a DocumentDB account in Power BI Desktop?

How can I retrieve data from a collection in Power BI Desktop?

How can I transform nested JSON data in Power BI Desktop?

How can I publish and share my reports in PowerBI.com?

Before following the instructions in this Power BI tutorial, ensure that you have the following:

The latest version of Power BI Desktop.

Access to our demo account or data in your Azure DocumentDB account.

The demo account is populated with the volcano data shown in this tutorial. This demo account is not

bound by any SLAs and is meant for demonstration purposes only. We reserve the right to make

modifications to this demo account including but not limited to, terminating the account, changing the

key, restricting access, changing and delete the data, at any time without advance notice or reason.

Or, to create your own account, see Create a DocumentDB database account using the Azure portal. Then,

to get sample volcano data that's similar to what's used in this tutorial (but does not contain the

GeoJSON blocks), see the NOAA site and then import the data using the DocumentDB data migration

tool.

URL: https://analytics.documents.azure.com

Read-only key:

MSr6kt7Gn0YRQbjd6RbTnTt7VHc5ohaAFu7osF0HdyQmfR+YhwCH2D2jcczVIR1LNK3nMPNBD31losN7lQ/fkw==

To share your reports in PowerBI.com, you must have an account in PowerBI.com. To learn more about Power BI for

Free and Power BI Pro, please visit https://powerbi.microsoft.com/pricing.

In this tutorial, let's imagine that you are a geologist studying volcanoes around the world. The volcano data is

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-powerbi-visualize.md
https://github.com/h0n
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/mimig1
https://github.com/v-aljenk
https://powerbi.microsoft.com/
https://powerbi.microsoft.com/desktop
https://analytics.documents.azure.com
https://azure.microsoft.com/documentation/articles/documentdb-create-account/
https://www.ngdc.noaa.gov/nndc/struts/form?t=102557&s=5&d=5
https://azure.microsoft.com/documentation/articles/documentdb-import-data/
https://powerbi.microsoft.com/pricing
https://powerbi.microsoft.com/pricing

{

 "Volcano Name": "Rainier",

 "Country": "United States",

 "Region": "US-Washington",

 "Location": {

 "type": "Point",

 "coordinates": [

 -121.758,

 46.87

]

 },

 "Elevation": 4392,

 "Type": "Stratovolcano",

 "Status": "Dendrochronology",

 "Last Known Eruption": "Last known eruption from 1800-1899, inclusive"

}

stored in a DocumentDB account and the JSON documents look like the one below.

You want to retrieve the volcano data from the DocumentDB account and visualize data in an interactive Power BI

report like the one below.

Ready to give it a try? Let's get started.

1. Run Power BI Desktop on your workstation.

2. Once Power BI Desktop is launched, a Welcome screen is displayed.

4. Select the HomeHome ribbon, then click on Get DataGet Data . The Get DataGet Data window should appear.

3. You can Get DataGet Data , see Recent SourcesRecent Sources , or Open Other ReportsOpen Other Reports directly from the Welcome screen. Click

the X at the top right corner to close the screen. The ReportReport view of Power BI Desktop is displayed.

5. Click on AzureAzure, select Microsoft Azure DocumentDB (Beta)Microsoft Azure DocumentDB (Beta) , and then click ConnectConnect. The MicrosoftMicrosoft

Azure DocumentDB ConnectAzure DocumentDB Connect window should appear.

6. Specify the DocumentDB account endpoint URL you would like to retrieve the data from as shown below,

and then click OKOK. You can retrieve the URL from the URI box in the KeysKeys blade of the Azure portal or you

can use the demo account, in which case the URL is https://analytics.documents.azure.com .

Leave the database name, collection name, and SQL statement blank as these fields are optional. Instead, we

will use the Navigator to select the Database and Collection to identify where the data comes from.

7. If you are connecting to this endpoint for the first time, you will be prompted for the account key. You can

retrieve the key from the Pr imary KeyPr imary Key box in the Read-only KeysRead-only Keys blade of the Azure portal, or you can use

the demo account, in which case the key is

RcEBrRI2xVnlWheejXncHId6QRcKdCGQSW6uSUEgroYBWVnujW3YWvgiG2ePZ0P0TppsrMgscoxsO7cf6mOpcA== . Enter the

account key and click ConnectConnect.

We recommend that you use the read-only key when building reports. This will prevent unnecessary

exposure of the master key to potential security risks. The read-only key is available from the Keys blade of

the Azure portal or you can use the demo account information provided above.

Flattening and transforming JSON documents

8. When the account is successfully connected, the Nav igatorNav igator will appear. The Nav igatorNav igator will show a list of

databases under the account.

9. Click and expand on the database where the data for the report will come from, if you're using the demo

account, select volcanodbvolcanodb.

11. Click EditEdit to launch the Query Editor so we can transform the data.

10. Now, select a collection that you will retrieve the data from. If you're using the demo account, select

volcano1volcano1 .

The Preview pane shows a list of RecordRecord items. A Document is represented as a RecordRecord type in Power BI.

Similarly, a nested JSON block inside a document is also a RecordRecord.

1. In the Power BI Query Editor, you should see a DocumentDocument column in the center pane.

2. Click on the expander at the right side of the DocumentDocument column header. The context menu with a list of

fields will appear. Select the fields you need for your report, for instance, Volcano Name, Country, Region,

Location, Elevation, Type, Status and Last Know Eruption, and then click OKOK.

3. The center pane will display a preview of the result with the fields selected.

4. In our example, the Location property is a GeoJSON block in a document. As you can see, Location is

represented as a RecordRecord type in Power BI Desktop.

5. Click on the expander at the right side of the Location column header. The context menu with type and

coordinates fields will appear. Let's select the coordinates field and click OKOK.

6. The center pane now shows a coordinates column of L istL ist type. As shown at the beginning of the tutorial, the

GeoJSON data in this tutorial is of Point type with Latitude and Longitude values recorded in the coordinates

array.

The coordinates[0] element represents Longitude while coordinates[1] represents Latitude.

7. To flatten the coordinates array, we will create a Custom ColumnCustom Column called LatLong. Select the Add ColumnAdd Column

ribbon and click on Add Custom ColumnAdd Custom Column . The Add Custom ColumnAdd Custom Column window should appear.

8. Provide a name for the new column, e.g. LatLong.

9. Next, specify the custom formula for the new column. For our example, we will concatenate the Latitude and

Longitude values separated by a comma as shown below using the following formula:

Text.From([Document.Location.coordinates]{1})&","&Text.From([Document.Location.coordinates]{0}) . Click OKOK.

For more information on Data Analysis Expressions (DAX) including DAX functions, please visit DAX Basic in

Power BI Desktop.

10. Now, the center pane will show the new LatLong column populated with the Latitude and Longitude values

separated by a comma.

https://support.powerbi.com/knowledgebase/articles/554619-dax-basics-in-power-bi-desktop

If you receive an Error in the new column, make sure that the applied steps under Query Settings match the

following figure:

If your steps are different, delete the extra steps and try adding the custom column again.

11. We have now completed flattening the data into tabular format. You can leverage all of the features available

in the Query Editor to shape and transform data in DocumentDB. If you're using the sample, change the data

type for Elevation to Whole numberWhole number by changing the Data TypeData Type on the HomeHome ribbon.

12. Click Close and ApplyClose and Apply to save the data model.

Build the reports

Power BI Desktop Report view is where you can start creating reports to visualize data. You can create reports by

dragging and dropping fields into the ReportReport canvas.

In the Report view, you should find:

1. The F ieldsFields pane, this is where you will see a list of data models with fields you can use for your reports.

2. The VisualizationsVisualizations pane. A report can contain a single or multiple visualizations. Pick the visual types fitting

your needs from the VisualizationsVisualizations pane.

3. The ReportReport canvas, this is where you will build the visuals for your report.

4. The ReportReport page. You can add multiple report pages in Power BI Desktop.

The following shows the basic steps of creating a simple interactive Map view report.

1. For our example, we will create a map view showing the location of each volcano. In the VisualizationsVisualizations pane,

click on the Map visual type as highlighted in the screenshot above. You should see the Map visual type painted

on the ReportReport canvas. The VisualizationVisualization pane should also display a set of properties related to the Map visual

type.

2. Now, drag and drop the LatLong field from the F ieldsFields pane to the LocationLocation property in VisualizationsVisualizations pane.

3. Next, drag and drop the Volcano Name field to the LegendLegend property.

4. Then, drag and drop the Elevation field to the S izeS ize property.

5. You should now see the Map visual showing a set of bubbles indicating the location of each volcano with the

Publish and share your report

Create a dashboard in PowerBI.com

size of the bubble correlating to the elevation of the volcano.

6. You now have created a basic report. You can further customize the report by adding more visualizations. In

our case, we added a Volcano Type slicer to make the report interactive.

To share your report, you must have an account in PowerBI.com.

1. In the Power BI Desktop, click on the HomeHome ribbon.

2. Click PublishPublish . You will be prompted to enter the user name and password for your PowerBI.com account.

3. Once the credential has been authenticated, the report is published to your destination you selected.

4. Click Open 'PowerBITutor ial .pbix' in Power BIOpen 'PowerBITutor ial .pbix' in Power BI to see and share your report on PowerBI.com.

Now that you have a report, lets share it on PowerBI.com

When you publish your report from Power BI Desktop to PowerBI.com, it generates a ReportReport and a DatasetDataset in

your PowerBI.com tenant. For example, after you published a report called PowerBITutor ialPowerBITutor ial to PowerBI.com, you

will see PowerBITutorial in both the ReportsReports and DatasetsDatasets sections on PowerBI.com.

Refresh data in PowerBI.com

To create a sharable dashboard, click the Pin L ive PagePin L ive Page button on your PowerBI.com report.

Then follow the instructions in Pin a tile from a report to create a new dashboard.

You can also do ad hoc modifications to report before creating a dashboard. However, it's recommended that you

use Power BI Desktop to perform the modifications and republish the report to PowerBI.com.

There are two ways to refresh data, ad hoc and scheduled.

For an ad hoc refresh, simply click on the eclipses (…) by the DatasetDataset, e.g. PowerBITutorial. You should see a list of

actions including Refresh NowRefresh Now . Click Refresh NowRefresh Now to refresh the data.

https://powerbi.microsoft.com/documentation/powerbi-service-pin-a-tile-to-a-dashboard-from-a-report/#pin-a-tile-from-a-report

Next steps

For a scheduled refresh, do the following.

1. Click Schedule RefreshSchedule Refresh in the action list.

2. In the SettingsSettings page, expand Data source credentialsData source credentials .

4. Enter the key to connect to the DocumentDB account for that data set, then click S ign inS ign in .

5. Expand Schedule RefreshSchedule Refresh and set up the schedule you want to refresh the dataset.

6. Click ApplyApply and you are done setting up the scheduled refresh.

3. Click on Edit credentialsEdit credentials .

The Configure popup appears.

To learn more about Power BI, see Get started with Power BI.

To learn more about DocumentDB, see the DocumentDB documentation landing page.

https://powerbi.microsoft.com/documentation/powerbi-service-get-started/
https://azure.microsoft.com/documentation/services/documentdb/

Rajesh Nagpal • mimig • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • arramac • Mo Derakhshani • Andrew Liu

• Ryan CrawCour • Ross McAllister • Andy Pasic

DocumentDB APIs and SDKs
11/22/2016 • 4 min to read • Edit on GitHub

Contributors

DocumentDB Java API and SDK

SDK DownloadSDK Download Maven

API documentationAPI documentation Java API reference documentation

Contribute to SDKContribute to SDK GitHub

Get startedGet started Get started with the Java SDK

Current supported runtimeCurrent supported runtime JDK 7

Release Notes

1.9.1

1.9.0

1.8.1

1.8.0

Added support for BoundedStaleness consistency level.

Added support for direct connectivity for CRUD operations for partitioned collections.

Fixed a bug in querying a database with SQL.

Fixed a bug in the session cache where session token may be set incorrectly.

Added support for cross partition parallel queries.

Added support for TOP/ORDER BY queries for partitioned collections.

Added support for strong consistency.

Added support for name based requests when using direct connectivity.

Fixed to make ActivityId stay consistent across all request retries.

Fixed a bug related to the session cache when recreating a collection with the same name.

Added Polygon and LineString DataTypes while specifying collection indexing policy for geo-fencing spatial

queries.

Fixed issues with Java Doc for Java 1.8.

Fixed a bug in PartitionKeyDefinitionMap to cache single partition collections and not make extra fetch

partition key requests.

Fixed a bug to not retry when an incorrect partition key value is provided.

Added the support for multi-region database accounts.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-sdk-java.md
https://github.com/rnagpal
https://github.com/mimig1
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/arramac
https://github.com/moderakh
https://github.com/aliuy
https://github.com/ryancrawcour
https://github.com/rmca14
https://github.com/v-anpasi
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22com.microsoft.azure%22 AND a%3A%22azure-documentdb%22
http://azure.github.io/azure-documentdb-java/
https://github.com/Azure/azure-documentdb-java/
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://mvnrepository.com/artifact/com.microsoft.azure/azure-documentdb/1.9.1
http://mvnrepository.com/artifact/com.microsoft.azure/azure-documentdb/1.9.0
http://mvnrepository.com/artifact/com.microsoft.azure/azure-documentdb/1.8.1
http://mvnrepository.com/artifact/com.microsoft.azure/azure-documentdb/1.8.0

1.7.1

1.7.0

1.6.0

1.5.1

1.5.0

1.4.0

1.3.0

1.2.0

1.1.0

1.0.0

Release & Retirement Dates

WARNING

Added support for automatic retry on throttled requests with options to customize the max retry attempts and

max retry wait time. See RetryOptions and ConnectionPolicy.getRetryOptions().

Deprecated IPartitionResolver based custom partitioning code. Please use partitioned collections for higher

storage and throughput.

Added retry policy support for throttling.

Added time to live (TTL) support for documents.

Implemented partitioned collections and user-defined performance levels.

Fixed a bug in HashPartitionResolver to generate hash values in little-endian to be consistent with other SDKs.

Add Hash & Range partition resolvers to assist with sharding applications across multiple partitions.

Implement Upsert. New upsertXXX methods added to support Upsert feature.

Implement ID Based Routing. No public API changes, all changes internal.

Release skipped to bring version number in alignment with other SDKs

Supports GeoSpatial Index

Validates id property for all resources. Ids for resources cannot contain ?, /, #, \, characters or end with a space.

Adds new header "index transformation progress" to ResourceResponse.

Implements V2 indexing policy

GA SDK

Microsoft will provide notification at least 12 months12 months in advance of retiring an SDK in order to smooth the

transition to a newer/supported version.

New features and functionality and optimizations are only added to the current SDK, as such it is recommend that

you always upgrade to the latest SDK version as early as possible.

Any request to DocumentDB using a retired SDK will be rejected by the service.

All versions of the Azure DocumentDB SDK for Java prior to version 1.0.01.0.0 will be retired on February 29, 2016February 29, 2016 .

http://mvnrepository.com/artifact/com.microsoft.azure/azure-documentdb/1.7.1
http://mvnrepository.com/artifact/com.microsoft.azure/azure-documentdb/1.7.0
http://mvnrepository.com/artifact/com.microsoft.azure/azure-documentdb/1.6.0
http://mvnrepository.com/artifact/com.microsoft.azure/azure-documentdb/1.5.1
http://mvnrepository.com/artifact/com.microsoft.azure/azure-documentdb/1.5.0
http://mvnrepository.com/artifact/com.microsoft.azure/azure-documentdb/1.4.0
http://mvnrepository.com/artifact/com.microsoft.azure/azure-documentdb/1.2.0
http://mvnrepository.com/artifact/com.microsoft.azure/azure-documentdb/1.1.0
http://mvnrepository.com/artifact/com.microsoft.azure/azure-documentdb/1.0.0

VERSIONVERSION RELEASE DATERELEASE DATE RETIREMENT DATERETIREMENT DATE

1.9.1 October 28, 2016 ---

1.9.0 October 03, 2016 ---

1.8.1 June 30, 2016 ---

1.8.0 June 14, 2016 ---

1.7.1 April 30, 2016 ---

1.7.0 April 27, 2016 ---

1.6.0 March 29, 2016 ---

1.5.1 December 31, 2015 ---

1.5.0 December 04, 2015 ---

1.4.0 October 05, 2015 ---

1.3.0 October 05, 2015 ---

1.2.0 August 05, 2015 ---

1.1.0 July 09, 2015 ---

1.0.1 May 12, 2015 ---

1.0.0 April 07, 2015 ---

0.9.5-prelease Mar 09, 2015 February 29, 2016

0.9.4-prelease February 17, 2015 February 29, 2016

0.9.3-prelease January 13, 2015 February 29, 2016

0.9.2-prelease December 19, 2014 February 29, 2016

0.9.1-prelease December 19, 2014 February 29, 2016

0.9.0-prelease December 10, 2014 February 29, 2016

FAQ

1 . How w il l customers be notified of the retir ing SDK?1 . How w il l customers be notified of the retir ing SDK?

Microsoft will provide 12 month advance notification to the end of support of the retiring SDK in order to facilitate

a smooth transition to a supported SDK. Further, customers will be notified through various communication

channels – Azure Management Portal, Developer Center, blog post, and direct communication to assigned service

administrators.

See Also

2 . Can customers author applications using a "to-be" retired DocumentDB SDK dur ing the 12 month2 . Can customers author applications using a "to-be" retired DocumentDB SDK dur ing the 12 month

per iod?per iod?

Yes, customers will have full access to author, deploy and modify applications using the "to-be" retired

DocumentDB SDK during the 12 month grace period. During the 12 month grace period, customers are advised

to migrate to a newer supported version of DocumentDB SDK as appropriate.

3 . Can customers author and modify applications using a retired DocumentDB SDK after the 123 . Can customers author and modify applications using a retired DocumentDB SDK after the 12

month notification per iod?month notification per iod?

After the 12 month notification period, the SDK will be retired. Any access to DocumentDB by an applications

using a retired SDK will not be permitted by the DocumentDB platform. Further, Microsoft will not provide

customer support on the retired SDK.

4 . What happens to Customer ’s running applications that are using unsupported DocumentDB SDK4 . What happens to Customer ’s running applications that are using unsupported DocumentDB SDK

vers ion?vers ion?

Any attempts made to connect to the DocumentDB service with a retired SDK version will be rejected.

5 . Will new features and functionality be applied to all non-retired SDKs5 . Will new features and functionality be applied to all non-retired SDKs

New features and functionality will only be added to new versions. If you are using an old, non-retired, version of

the SDK your requests to DocumentDB will still function as previous but you will not have access to any new

capabilities.

6 . What should I do if I cannot update my application before a cut-off date6 . What should I do if I cannot update my application before a cut-off date

We recommend that you upgrade to the latest SDK as early as possible. Once an SDK has been tagged for

retirement you will have 12 months to update your application. If, for whatever reason, you cannot complete your

application update within this timeframe then please contact the DocumentDB Team and request their assistance

before the cutoff date.

To learn more about DocumentDB, see Microsoft Azure DocumentDB service page.

mailto:askdocdb@microsoft.com
https://azure.microsoft.com/services/documentdb/

Rajesh Nagpal • mimig • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • arramac • Andrew Liu • Ryan CrawCour

• Andy Pasic

DocumentDB APIs and SDKs
11/22/2016 • 7 min to read • Edit on GitHub

Contributors

DocumentDB .NET API and SDK

SDK downloadSDK download NuGet

API documentationAPI documentation .NET API reference documentation

SamplesSamples .NET code samples

Get startedGet started Get started with the DocumentDB .NET SDK

Web app tutorialWeb app tutorial Web application development with DocumentDB

Current supported frameworkCurrent supported framework Microsoft .NET Framework 4.5

Release Notes

IMPORTANT

1.10.0

1.9.5

Starting with version 1.9.2 release, you may receive System.NotSupportedException when querying partitioned

collections. To avoid this error, ensure that your host process is 64-bit. For Executable projects, this can be done by

unchecking the "Prefer 32-bit" option in the project properties window, on the Build tab.

Added direct connectivity support for partitioned collections.

Improved performance for the Bounded Staleness consistency level.

Added Polygon and LineString DataTypes while specifying collection indexing policy for geo-fencing

spatial queries.

Added LINQ support for StringEnumConverter, IsoDateTimeConverter and UnixDateTimeConverter

while translating predicates.

Various SDK bug fixes.

Fixed an issue that caused the following NotFoundException: The read session is not available for the

input session token. This exception occurred in some cases when querying for the read-region of a geo-

distributed account.

Exposed the ResponseStream property in the ResourceResponse class, which enables direct access to the

underlying stream from a response.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-sdk-dotnet.md
https://github.com/rnagpal
https://github.com/mimig1
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/arramac
https://github.com/aliuy
https://github.com/ryancrawcour
https://github.com/v-anpasi
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/
https://msdn.microsoft.com/library/azure/dn948556.aspx
https://www.microsoft.com/download/details.aspx?id=30653
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/1.10.0
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/1.9.5

1.9.4

1.9.3

1.9.2

1.8.0

1.7.1

1.7.0

1.6.3

1.6.2

Modified the ResourceResponse, FeedResponse, StoredProcedureResponse and MediaResponse classes

to implement the corresponding public interface so that they can be mocked for test driven deployment

(TDD).

Fixed an issue that caused a malformed partition key header when using a custom JsonSerializerSettings

object for serializing data.

Fixed an issue that caused long running queries to fail with error: Authorization token is not valid at the

current time.

Fixed an issue that removed the original SqlParameterCollection from cross partition top/order-by

queries.

Added support for parallel queries for partitioned collections.

Added support for cross partition ORDER BY and TOP queries for partitioned collections.

Fixed the missing references to DocumentDB.Spatial.Sql.dll and

Microsoft.Azure.Documents.ServiceInterop.dll that are required when referencing a DocumentDB project

with a reference to the DocumentDB Nuget package.

Fixed the ability to use parameters of different types when using user-defined functions in LINQ.

Fixed a bug for globally replicated accounts where Upsert calls were being directed to read locations

instead of write locations.

Added methods to the IDocumentClient interface that were missing:

Unsealed public classes that are exposed in the IDocumentClient interface.

UpsertAttachmentAsync method that takes mediaStream and options as parameters

CreateAttachmentAsync method that takes options as a parameter

CreateOfferQuery method that takes querySpec as a parameter.

Added the support for multi-region database accounts.

Added support for retry on throttled requests. User can customize the number of retries and the max

wait time by configuring the ConnectionPolicy.RetryOptions property.

Added a new IDocumentClient interface that defines the signatures of all DocumenClient properties and

methods. As part of this change, also changed extension methods that create IQueryable and

IOrderedQueryable to methods on the DocumentClient class itself.

Added configuration option to set the ServicePoint.ConnectionLimit for a given DocumentDB endpoint

Uri. Use ConnectionPolicy.MaxConnectionLimit to change the default value, which is set to 50.

Deprecated IPartitionResolver and its implementation. Support for IPartitionResolver is now obsolete. It's

recommended that you use Partitioned Collections for higher storage and throughput.

Added an overload to Uri based ExecuteStoredProcedureAsync method that takes RequestOptions as a

parameter.

Added time to live (TTL) support for documents.

Fixed a bug in Nuget packaging of .NET SDK for packaging it as part of an Azure Cloud Service solution.

Implemented partitioned collections and user-defined performance levels.

https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/1.9.4
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/1.9.3
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/1.9.2
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/1.8.0
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/1.7.1
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/1.7.0
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/1.6.3
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/1.6.2

1.5.3

1.5.2

1.5.1

1.5.0

1.4.1

1.4.0

1.3.0

[F ixed][F ixed] Querying DocumentDB endpoint throws: 'System.Net.Http.HttpRequestException: Error while

copying content to a stream.

Expanded LINQ support including new operators for paging, conditional expressions and range

comparison.

[F ixed][F ixed] ArgumentOutOfRangeException when combining Model projection with Where-In in linq query.

#81

Take operator to enable SELECT TOP behavior in LINQ

CompareTo operator to enable string range comparisons

Conditional (?) and coalesce operators (??)

[F ixed][F ixed] If Select is not the last expression the LINQ Provider assumed no projection and produced

SELECT * incorrectly. #58

Implemented Upsert, Added UpsertXXXAsync methods

Performance improvements for all requests

LINQ Provider support for conditional, coalesce and CompareTo methods for strings

[F ixed][F ixed] LINQ provider --> Implement Contains method on List to generate the same SQL as on

IEnumerable and Array

[F ixed][F ixed] BackoffRetryUtility uses the same HttpRequestMessage again instead of creating a new one on

retry

[Obsolete][Obsolete] UriFactory.CreateCollection --> should now use UriFactory.CreateDocumentCollection

[F ixed][F ixed] Localization issues when using non en culture info such as nl-NL etc.

ID Based Routing

Added IsValid() and IsValidDetailed() in LINQ for geospatial

LINQ Provider support enhanced

New UriFactory helper to assist with constructing ID based resource links

New overloads on DocumentClient to take in URI

MathMath - Abs, Acos, Asin, Atan, Ceiling, Cos, Exp, Floor, Log, Log10, Pow, Round, Sign, Sin, Sqrt, Tan,

Truncate

S tr ingStr ing - Concat, Contains, EndsWith, IndexOf, Count, ToLower, TrimStart, Replace, Reverse,

TrimEnd, StartsWith, SubString, ToUpper

ArrayArray - Concat, Contains, Count

ININ operator

Added support for modifying indexing policies

Added support for spatial indexing and query

New ReplaceDocumentCollectionAsync method in DocumentClient

New IndexTransformationProgress property in ResourceResponse for tracking percent progress

of index policy changes

DocumentCollection.IndexingPolicy is now mutable

New Microsoft.Azure.Documents.Spatial namespace for serializing/deserializing spatial types like

https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/1.5.3
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/1.5.2
https://github.com/Azure/azure-documentdb-dotnet/issues/81
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/1.5.1
https://github.com/Azure/azure-documentdb-dotnet/issues/58
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/1.5.0
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/1.4.1
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/1.4.0
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/1.3.0

1.2.0

1.1.0

1.0.0

NOTE

0.9.x-preview

Release & Retirement Dates

WARNING

[F ixed][F ixed] : Incorrect SQL query generated from linq expression #38

Point and Polygon

New SpatialIndex class for indexing GeoJSON data stored in DocumentDB

Dependency on Newtonsoft.Json v5.0.7

Changes to support Order By

LINQ provider support for OrderBy() or OrderByDescending()

NB: Possible breaking change

If you have existing code that provisions collections with a custom indexing policy, then

your existing code will need to be updated to support the new IndexingPolicy class. If you

have no custom indexing policy, then this change does not affect you.

IndexingPolicy to support Order By

Support for partitioning data by using the new HashPartitionResolver and RangePartitionResolver

classes and the IPartitionResolver

DataContract serialization

Guid support in LINQ provider

UDF support in LINQ

GA SDK

There was a change of NuGet package name between preview and GA. We moved from

Microsoft.Azure.Documents.ClientMicrosoft.Azure.Documents.Client to Microsoft.Azure.DocumentDBMicrosoft.Azure.DocumentDB

Preview SDKs [Obsolete]

Microsoft will provide notification at least 12 months12 months in advance of retiring an SDK in order to smooth the

transition to a newer/supported version.

New features and functionality and optimizations are only added to the current SDK, as such it is

recommended that you always upgrade to the latest SDK version as early as possible.

Any request to DocumentDB using a retired SDK will be rejected by the service.

All versions of the Azure DocumentDB SDK for .NET prior to version 1.0.01.0.0 will be retired on February 29, 2016February 29, 2016 .

https://github.com/Azure/azure-documentdb-net/issues/38
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/1.2.0
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/1.1.0
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/1.0.0
https://www.nuget.org/packages/Microsoft.Azure.Documents.Client

VERSIONVERSION RELEASE DATERELEASE DATE RETIREMENT DATERETIREMENT DATE

1.10.0 September 27, 2016 ---

1.9.5 September 01, 2016 ---

1.9.4 August 24, 2016 ---

1.9.3 August 15, 2016 ---

1.9.2 July 23, 2016 ---

1.9.1 Deprecated ---

1.9.0 Deprecated ---

1.8.0 June 14, 2016 ---

1.7.1 May 06, 2016 ---

1.7.0 April 26, 2016 ---

1.6.3 April 08, 2016 ---

1.6.2 March 29, 2016 ---

1.5.3 February 19, 2016 ---

1.5.2 December 14, 2015 ---

1.5.1 November 23, 2015 ---

1.5.0 October 05, 2015 ---

1.4.1 August 25, 2015 ---

1.4.0 August 13, 2015 ---

1.3.0 August 05, 2015 ---

1.2.0 July 06, 2015 ---

1.1.0 April 30, 2015 ---

1.0.0 April 08, 2015 ---

0.9.3-prelease March 12, 2015 February 29, 2016

0.9.2-prelease January , 2015 February 29, 2016

.9.1-prelease October 13, 2014 February 29, 2016

0.9.0-prelease August 21, 2014 February 29, 2016

VERSIONVERSION RELEASE DATERELEASE DATE RETIREMENT DATERETIREMENT DATE

FAQ

See Also

1 . How w il l customers be notified of the retir ing SDK?1 . How w il l customers be notified of the retir ing SDK?

Microsoft will provide 12 month advance notification to the end of support of the retiring SDK in order to

facilitate a smooth transition to a supported SDK. Further, customers will be notified through various

communication channels – Azure Management Portal, Developer Center, blog post, and direct

communication to assigned service administrators.

2 . Can customers author applications using a "to-be" retired DocumentDB SDK dur ing the 122 . Can customers author applications using a "to-be" retired DocumentDB SDK dur ing the 12

month per iod?month per iod?

Yes, customers will have full access to author, deploy and modify applications using the "to-be" retired

DocumentDB SDK during the 12 month grace period. During the 12 month grace period, customers are

advised to migrate to a newer supported version of DocumentDB SDK as appropriate.

3 . Can customers author and modify applications using a retired DocumentDB SDK after the3 . Can customers author and modify applications using a retired DocumentDB SDK after the

12 month notification per iod?12 month notification per iod?

After the 12 month notification period, the SDK will be retired. Any access to DocumentDB by an

applications using a retired SDK will not be permitted by the DocumentDB platform. Further, Microsoft will

not provide customer support on the retired SDK.

4 . What happens to Customer ’s running applications that are using unsupported DocumentDB4 . What happens to Customer ’s running applications that are using unsupported DocumentDB

SDK vers ion?SDK vers ion?

Any attempts made to connect to the DocumentDB service with a retired SDK version will be rejected.

5 . Will new features and functionality be applied to all non-retired SDKs5 . Will new features and functionality be applied to all non-retired SDKs

New features and functionality will only be added to new versions. If you are using an old, non-retired,

version of the SDK your requests to DocumentDB will still function as previous but you will not have access

to any new capabilities.

6 . What should I do if I cannot update my application before a cut-off date6 . What should I do if I cannot update my application before a cut-off date

We recommend that you upgrade to the latest SDK as early as possible. Once an SDK has been tagged for

retirement you will have 12 months to update your application. If, for whatever reason, you cannot

complete your application update within this timeframe then please contact the DocumentDB Team and

request their assistance before the cutoff date.

To learn more about DocumentDB, see Microsoft Azure DocumentDB service page.

mailto:askdocdb@microsoft.com
https://azure.microsoft.com/services/documentdb/

Rajesh Nagpal • mimig

DocumentDB APIs and SDKs
11/22/2016 • 1 min to read • Edit on GitHub

Contributors

DocumentDB .NET Core API and SDK

SDK downloadSDK download NuGet

API documentationAPI documentation .NET API reference documentation

SamplesSamples .NET code samples

Get startedGet started Get started with the DocumentDB .NET Core SDK

Web app tutorialWeb app tutorial Web application development with DocumentDB

Current supported frameworkCurrent supported framework .NET Standard 1.6

Release Notes

0.1.0-preview

Release & Retirement Dates

VERSIONVERSION RELEASE DATERELEASE DATE RETIREMENT DATERETIREMENT DATE

0.1.0-preview November 15, 2016 ---

See Also

The DocumentDB .NET Core Preview SDK enables you to build fast, cross-platform ASP.NET Core and .NET Core

apps to run on Windows, Mac, and Linux, as well as create Universal Windows Platform (UWP) apps.

The DocumentDB .NET Core Preview SDK has feature parity with the latest version of the DocumentDB .NET SDK

and supports the following:

All connection modes: Gateway mode, Direct TCP, and Direct HTTPs.

All consistency levels: Strong, Session, Bounded Staleness, and Eventual.

Partitioned collections.

Multi-region database accounts and geo-replication.

If you have questions related to this SDK, post to StackOverflow, the MSDN forums, or send email to

askdocdb@microsoft.com. Or file an issue in the github repository.

To learn more about DocumentDB, see Microsoft Azure DocumentDB service page.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-sdk-dotnet-core.md
https://github.com/rnagpal
https://github.com/mimig1
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB.Core/
https://msdn.microsoft.com/library/azure/dn948556.aspx
https://www.nuget.org/packages/NETStandard.Library
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB.Core/0.1.0-preview
https://www.asp.net/core
https://www.microsoft.com/net/core#windows
https://www.visualstudio.com/vs/universal-windows-platform/
http://stackoverflow.com/questions/tagged/azure-documentdb
http://go.microsoft.com/fwlink/?LinkId=631655
mailto:askdocdb@microsoft.com
https://github.com/Azure/azure-documentdb-dotnet/issues
https://azure.microsoft.com/services/documentdb/

Rajesh Nagpal • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • mimig • Andrew Liu • jayantacs • Ryan CrawCour

DocumentDB .NET examples
11/15/2016 • 4 min to read • Edit on GitHub

Contributors

NOTE

Database examples

TASKTASK API REFERENCEAPI REFERENCE

Create a database DocumentClient.CreateDatabaseAsync

Query an account for a database DocumentQueryable.CreateDatabaseQuery

Read a database by Id DocumentClient.ReadDatabaseAsync

List databases for an account DocumentClient.ReadDatabaseFeedAsync

Delete a database DocumentClient.DeleteDatabaseAsync

Collection examples

Sample solutions that perform CRUD operations and other common operations on Azure DocumentDB resources

are included in the azure-documentdb-net GitHub repository. This article provides:

Links to the tasks in each of the example C# project files.

Links to the related API reference content.

Prerequis itesPrerequis ites

1. You need an Azure account to use these NoSQL examples:

2. You also need the Microsoft.Azure.DocumentDB NuGet package.

You can open an Azure account for free: You get credits you can use to try out paid Azure services, and

even after they're used up you can keep the account and use free Azure services, such as Websites. Your

credit card will never be charged, unless you explicitly change your settings and ask to be charged.

You can activate Visual Studio subscriber benefits: Your Visual Studio subscription gives you

credits every month that you can use for paid Azure services.

Each sample is self-contained, it sets itself up and cleans up after itself. As such, the samples issue multiple calls to

CreateDocumentCollectionAsync(). Each time this is done your subscription is billed for 1 hour of usage per the

performance tier of the collection being created.

The RunDatabaseDemo method of the sample of the DatabaseManagement project shows how to perform the

following tasks.

The RunCollectionDemo method of the sample CollectionManagement project shows how to do the following

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-dotnet-samples.md
https://github.com/rnagpal
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/mimig1
https://github.com/aliuy
https://github.com/jayantacs
https://github.com/ryancrawcour
https://github.com/Azure/azure-documentdb-net/tree/master/samples/code-samples
https://azure.microsoft.com/pricing/free-trial/
https://azure.microsoft.com/pricing/member-offers/msdn-benefits-details/
http://www.nuget.org/packages/Microsoft.Azure.DocumentDB/
https://github.com/Azure/azure-documentdb-dotnet/blob/530c8d9cf7c99df7300246da05206c57ce654233/samples/code-samples/DatabaseManagement/Program.cs#L72-L121
https://github.com/Azure/azure-documentdb-dotnet/blob/530c8d9cf7c99df7300246da05206c57ce654233/samples/code-samples/DatabaseManagement/Program.cs#L90
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createdatabaseasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/530c8d9cf7c99df7300246da05206c57ce654233/samples/code-samples/DatabaseManagement/Program.cs#L81
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdatabasequery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/530c8d9cf7c99df7300246da05206c57ce654233/samples/code-samples/DatabaseManagement/Program.cs#L102
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readdatabaseasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/530c8d9cf7c99df7300246da05206c57ce654233/samples/code-samples/DatabaseManagement/Program.cs#L108-L113
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readdatabasefeedasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/530c8d9cf7c99df7300246da05206c57ce654233/samples/code-samples/DatabaseManagement/Program.cs#L118
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.deletedatabaseasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/530c8d9cf7c99df7300246da05206c57ce654233/samples/code-samples/CollectionManagement/Program.cs#L96-L185

TASKTASK API REFERENCEAPI REFERENCE

Create a collection DocumentClient.CreateDocumentCollectionAsync

Get performance tier of a collection DocumentQueryable.CreateOfferQuery

Change performance tier of a collection DocumentClient.ReplaceOfferAsync

Get a collection by Id DocumentClient.ReadDocumentCollectionAsync

Read a list of all collections in a database DocumentClient.ReadDocumentCollectionFeedAsync

Delete a collection DocumentClient.DeleteDocumentCollectionAsync

Document examples

TASKTASK API REFERENCEAPI REFERENCE

Create a document DocumentClient.CreateDocumentAsync

Read a document by Id DocumentClient.ReadDocumentAsync

Read all documents in a collection DocumentClient.ReadDocumentFeedAsync

Query for documents DocumentClient.CreateDocumentQuery

Replace a document DocumentClient.ReplaceDocumentAsync

Upsert a document DocumentClient.UpsertDocumentAsync

Delete document DocumentClient.DeleteDocumentAsync

Working with .NET dynamic objects DocumentClient.CreateDocumentAsync
DocumentClient.ReadDocumentAsync
DocumentClient.ReplaceDocumentAsync

Replace document with conditional ETag check DocumentClient.AccessCondition
Documents.Client.AccessConditionType

Read document only if document has changed DocumentClient.AccessCondition
Documents.Client.AccessConditionType

Indexing examples

tasks.

The RunDocumentsDemo method of the sample DocumentManagement project shows how to do the following

tasks.

The RunIndexDemo method of the sample IndexManagement project shows how to perform the following tasks.

https://github.com/Azure/azure-documentdb-dotnet/blob/89670bc8aefd9bdd932db7f9b6d2fcb9b6acf35e/samples/code-samples/CollectionManagement/Program.cs#L101
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createdocumentcollectionasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/89670bc8aefd9bdd932db7f9b6d2fcb9b6acf35e/samples/code-samples/CollectionManagement/Program.cs#L130
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createofferquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/89670bc8aefd9bdd932db7f9b6d2fcb9b6acf35e/samples/code-samples/CollectionManagement/Program.cs#L142-L143
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.replaceofferasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/89670bc8aefd9bdd932db7f9b6d2fcb9b6acf35e/samples/code-samples/CollectionManagement/Program.cs#L153
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readdocumentcollectionasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/89670bc8aefd9bdd932db7f9b6d2fcb9b6acf35e/samples/code-samples/CollectionManagement/Program.cs#L162
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readdocumentcollectionfeedasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/89670bc8aefd9bdd932db7f9b6d2fcb9b6acf35e/samples/code-samples/CollectionManagement/Program.cs#L175
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.deletedocumentcollectionasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/f374cc601f4cf08d11c88f0c3fa7dcefaf7ecfe8/samples/code-samples/DocumentManagement/Program.cs#L97-L102
https://github.com/Azure/azure-documentdb-dotnet/blob/f374cc601f4cf08d11c88f0c3fa7dcefaf7ecfe8/samples/code-samples/DocumentManagement/Program.cs#L198
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createdocumentasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/f374cc601f4cf08d11c88f0c3fa7dcefaf7ecfe8/samples/code-samples/DocumentManagement/Program.cs#L211
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readdocumentasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/f374cc601f4cf08d11c88f0c3fa7dcefaf7ecfe8/samples/code-samples/DocumentManagement/Program.cs#L227
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readdocumentfeedasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/f374cc601f4cf08d11c88f0c3fa7dcefaf7ecfe8/samples/code-samples/DocumentManagement/Program.cs#L248-L251
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/f374cc601f4cf08d11c88f0c3fa7dcefaf7ecfe8/samples/code-samples/DocumentManagement/Program.cs#L263
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.replacedocumentasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/f374cc601f4cf08d11c88f0c3fa7dcefaf7ecfe8/samples/code-samples/DocumentManagement/Program.cs#L300
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.upsertdocumentasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/f374cc601f4cf08d11c88f0c3fa7dcefaf7ecfe8/samples/code-samples/DocumentManagement/Program.cs#L322
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.deletedocumentasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/f374cc601f4cf08d11c88f0c3fa7dcefaf7ecfe8/samples/code-samples/DocumentManagement/Program.cs#L331-L380
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createdocumentasync.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readdocumentasync.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.replacedocumentasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/f2b11dec45a195ddeed333560ebba63055f5ed09/samples/code-samples/DocumentManagement/Program.cs#L398-L440
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.accesscondition.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.accessconditiontype.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/f2b11dec45a195ddeed333560ebba63055f5ed09/samples/code-samples/DocumentManagement/Program.cs#L442-L470
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.accesscondition.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.accessconditiontype.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/ea8c977b9c2f37ddc2894911ec239907ab60e40a/samples/code-samples/IndexManagement/Program.cs#L89-L117

TASKTASK API REFERENCEAPI REFERENCE

Exclude a document from the index IndexingDirective.Exclude

Use manual (instead of automatic) indexing IndexingPolicy.Automatic

Use lazy (instead of consistent) indexing IndexingMode.Lazy

Exclude specified document paths from the index IndexingPolicy.ExcludedPaths

Force a range scan operation on a hash indexed path FeedOptions.EnableScanInQuery

Use range indexes on strings IndexingPolicy.IncludedPaths
RangeIndex

Perform an index transform ReplaceDocumentCollectionAsync

Partitioning examples

TASKTASK API REFERENCEAPI REFERENCE

Use a HashPartitionResolver HashPartitionResolver

Use a RangePartitionResolver Range with
RangePartitionResolver

Implement custom partition resolvers IPartitionResolver

Implement a simple lookup table with
LookupPartitionResolver.cs

RangePartitionResolver

Implement a partition resolver that creates or clones
collections with
ManagedHashPartitionResolver.cs

IPartitionResolver

Implement a spillover scheme with
SpilloverPartitionResolver.cs

IPartitionResolver

Saving and loading resolver configs with
RunSerializeDeserializeSample

IPartitionResolver

Add, remove, and re-balance data among partitions with
RepartitionDataSample and
DocumentClientHashPartitioningManager.cs

HashPartitionResolver

Implement a partition resolver for routing during
repartitioning

IPartitionResolver

For more information about indexing, see DocumentDB indexing policies.

The partitioning sample file, azure-documentdb-net/samples/code-samples/Partitioning/Program.cs, shows how

to do the following tasks. In some cases, additional helper files are used to complete the task.

For more information about partitioning and sharding, see Partition and scale data in DocumentDB.

https://github.com/Azure/azure-documentdb-dotnet/blob/2e9a48b6a446b47dd6182606c8608d439b88b683/samples/code-samples/IndexManagement/Program.cs#L125-L163
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.indexingdirective.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/2e9a48b6a446b47dd6182606c8608d439b88b683/samples/code-samples/IndexManagement/Program.cs#L171-L209
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.indexingpolicy.automatic.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/2e9a48b6a446b47dd6182606c8608d439b88b683/samples/code-samples/IndexManagement/Program.cs#L221-L238
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.indexingpolicy.indexingmode.aspx#P:Microsoft.Azure.Documents.IndexingPolicy.IndexingMode
https://github.com/Azure/azure-documentdb-dotnet/blob/2e9a48b6a446b47dd6182606c8608d439b88b683/samples/code-samples/IndexManagement/Program.cs#L248-L297
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.indexingpolicy.excludedpaths.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/2e9a48b6a446b47dd6182606c8608d439b88b683/samples/code-samples/IndexManagement/Program.cs#L305-L340
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.feedoptions.enablescaninquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/2e9a48b6a446b47dd6182606c8608d439b88b683/samples/code-samples/IndexManagement/Program.cs#L342-L405
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.indexingpolicy.includedpaths.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.rangeindex.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/2e9a48b6a446b47dd6182606c8608d439b88b683/samples/code-samples/IndexManagement/Program.cs#L407-L464
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.replacedocumentcollectionasync.aspx
https://github.com/Azure/azure-documentdb-net/blob/master/samples/code-samples/Partitioning/Program.cs
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Partitioning/Program.cs#L144-L160
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.partitioning.hashpartitionresolver.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Partitioning/Program.cs#L162-L186
https://msdn.microsoft.com/library/azure/mt126048.aspx
https://msdn.microsoft.com/library/azure/mt126047.aspx
https://github.com/Azure/azure-documentdb-net/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Partitioning/Program.cs#L285
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.ipartitionresolver.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Partitioning/Program.cs#L115-L119
https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/code-samples/Partitioning/Partitioners/LookupPartitionResolver.cs
https://msdn.microsoft.com/library/azure/mt126047.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Partitioning/Program.cs#L121-L126
https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/code-samples/Partitioning/Partitioners/ManagedHashPartitionResolver.cs
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.ipartitionresolver.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Partitioning/Program.cs#L128-L134
https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/code-samples/Partitioning/Partitioners/SpilloverPartitionResolver.cs
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.ipartitionresolver.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Partitioning/Program.cs#L136-L137
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Partitioning/Program.cs#L295-L311
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.ipartitionresolver.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Partitioning/Program.cs#L139-L141
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Partitioning/Program.cs#L313-L345
https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/code-samples/Partitioning/Util/DocumentClientHashPartitioningManager.cs
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.partitioning.hashpartitionresolver.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/code-samples/Partitioning/Partitioners/TransitionHashPartitionResolver.cs
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.ipartitionresolver.aspx

Geospatial examples

TASKTASK API REFERENCEAPI REFERENCE

Enable geospatial indexing on a new collection IndexingPolicy
IndexKind.Spatial
DataType.Point

Insert documents with GeoJSON points DocumentClient.CreateDocumentAsync
DataType.Point

Find points within a specified distance ST_DISTANCE or
[GeometryOperationExtensions.Distance]
(https://msdn.microsoft.com/library/azure/microsoft.azure.doc
uments.spatial.geometryoperationextensions.distance.aspx#M
:Microsoft.Azure.Documents.Spatial.GeometryOperationExten
sions.Distance(Microsoft.Azure.Documents.Spatial.Geometry,
Microsoft.Azure.Documents.Spatial.Geometry)

Find points within a polygon ST_WITHIN or
[GeometryOperationExtensions.Within]
(https://msdn.microsoft.com/library/azure/microsoft.azure.doc
uments.spatial.geometryoperationextensions.within.aspx#M:
Microsoft.Azure.Documents.Spatial.GeometryOperationExtens
ions.Within(Microsoft.Azure.Documents.Spatial.Geometry,Micr
osoft.Azure.Documents.Spatial.Geometry) and
Polygon

Enable geospatial indexing on an existing collection DocumentClient.ReplaceDocumentCollectionAsync
DocumentCollection.IndexingPolicy

Validate point and polygon data ST_ISVALID
ST_ISVALIDDETAILED
GeometryOperationExtensions.IsValid
GeometryOperationExtensions.IsValidDetailed

Query examples

TASKTASK API REFERENCEAPI REFERENCE

Query for all documents DocumentQueryable.CreateDocumentQuery

Query for equality using == DocumentQueryable.CreateDocumentQuery

Query for inequality using != and NOT DocumentQueryable.CreateDocumentQuery

Query using range operators like >, <, >=, <= DocumentQueryable.CreateDocumentQuery

The geospatial sample file, azure-documentdb-net/samples/code-samples/Geospatial/Program.cs, shows how to

do the following tasks.

For more information about working with Geospatial data, see Working with Geospatial data in Azure

DocumentDB.

The query document file, azure-documentdb-net/samples/code-samples/Queries/Program.cs, shows how to do

each of the following tasks using the SQL query grammar, the LINQ provider with query, and with Lambda.

https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/code-samples/Geospatial/Program.cs
https://github.com/Azure/azure-documentdb-dotnet/blob/7b09c085817e850d683bc59bd864c2f6b552d275/samples/code-samples/Geospatial/Program.cs#L45-L63
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.indexingpolicy.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.indexkind.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.datatype.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/7b09c085817e850d683bc59bd864c2f6b552d275/samples/code-samples/Geospatial/Program.cs#L116-L126
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createdocumentasync.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.datatype.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/7b09c085817e850d683bc59bd864c2f6b552d275/samples/code-samples/Geospatial/Program.cs#L152-L194
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.spatial.geometryoperationextensions.distance.aspx#M:Microsoft.Azure.Documents.Spatial.GeometryOperationExtensions.Distance(Microsoft.Azure.Documents.Spatial.Geometry,Microsoft.Azure.Documents.Spatial.Geometry
https://github.com/Azure/azure-documentdb-dotnet/blob/7b09c085817e850d683bc59bd864c2f6b552d275/samples/code-samples/Geospatial/Program.cs#L196-L221
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.spatial.geometryoperationextensions.within.aspx#M:Microsoft.Azure.Documents.Spatial.GeometryOperationExtensions.Within(Microsoft.Azure.Documents.Spatial.Geometry,Microsoft.Azure.Documents.Spatial.Geometry
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.spatial.polygon.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/7b09c085817e850d683bc59bd864c2f6b552d275/samples/code-samples/Geospatial/Program.cs#L312-L336
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.replacedocumentcollectionasync.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.documentcollection.indexingpolicy.aspx#P:Microsoft.Azure.Documents.DocumentCollection.IndexingPolicy
https://github.com/Azure/azure-documentdb-dotnet/blob/7b09c085817e850d683bc59bd864c2f6b552d275/samples/code-samples/Geospatial/Program.cs#L223-L265
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.spatial.geometryoperationextensions.isvalid.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.spatial.geometryoperationextensions.isvaliddetailed.aspx
https://github.com/Azure/azure-documentdb-net/blob/master/samples/code-samples/Queries/Program.cs
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L122-L138
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L251-L268
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L270-L276
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L305-L325
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx

Query using range operators against strings DocumentQueryable.CreateDocumentQuery

Query with Order by DocumentQueryable.CreateDocumentQuery

Work with subdocuments DocumentQueryable.CreateDocumentQuery

Query with intra-document Joins DocumentQueryable.CreateDocumentQuery

Query with string, math and array operators DocumentQueryable.CreateDocumentQuery

Query with parameterized SQL using SqlQuerySpec DocumentQueryable.CreateDocumentQuery
SqlQuerySpec

Query with explict paging DocumentQueryable.CreateDocumentQuery

Query partitioned collections in parallel DocumentQueryable.CreateDocumentQuery

Query with Order by for partitioned collections DocumentQueryable.CreateDocumentQuery

TASKTASK API REFERENCEAPI REFERENCE

Server-side programming examples

TASKTASK API REFERENCEAPI REFERENCE

Create a stored procedure DocumentClient.CreateStoredProcedureAsync

Execute a stored procedure DocumentClient.ExecuteStoredProcedureAsync

Read a document feed for a stored procedure DocumentClient.ReadDocumentFeedAsync

Create a stored procedure with Order by DocumentClient.CreateStoredProcedureAsync

Create a pre-trigger DocumentClient.CreateTriggerAsync

Create a post-trigger DocumentClient.CreateTriggerAsync

Create a User Defined Function (UDF) DocumentClient.CreateUserDefinedFunctionAsync

User management examples

For more information about writing queries, see SQL query within DocumentDB.

The server-side programming file, azure-documentdb-net/samples/code-samples/ServerSideScripts/Program.cs,

shows how to do the following tasks.

For more information about server-side programming, see DocumentDB server-side programming: Stored

procedures, database triggers, and UDFs.

The user management file, azure-documentdb-net/samples/code-samples/UserManagement/Program.cs, shows

how to do the following tasks.

https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L337-L346
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L370-L392
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L394-L419
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L421-L435
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L527-L552
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L140-L174
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.sqlqueryspec.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L554-L576
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/code-samples/Queries/Program.cs#L664-L734
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/code-samples/Queries/Program.cs#L737-L810
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-net/blob/master/samples/code-samples/ServerSideScripts/Program.cs
https://github.com/Azure/azure-documentdb-net/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/ServerSideScripts/Program.cs#L112
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createstoredprocedureasync.aspx
https://github.com/Azure/azure-documentdb-net/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/ServerSideScripts/Program.cs#L127
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.executestoredprocedureasync.aspx
https://github.com/Azure/azure-documentdb-net/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/ServerSideScripts/Program.cs#L194
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readdocumentfeedasync.aspx
https://github.com/Azure/azure-documentdb-net/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/ServerSideScripts/Program.cs#L219
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createstoredprocedureasync.aspx
https://github.com/Azure/azure-documentdb-net/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/ServerSideScripts/Program.cs#L264
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createtriggerasync.aspx
https://github.com/Azure/azure-documentdb-net/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/ServerSideScripts/Program.cs#L329
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createtriggerasync.aspx
https://github.com/Azure/azure-documentdb-net/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/ServerSideScripts/Program.cs#L389
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createuserdefinedfunctionasync.aspx
https://github.com/Azure/azure-documentdb-net/blob/master/samples/code-samples/UserManagement/Program.cs

TASKTASK API REFERENCEAPI REFERENCE

Create a user DocumentClient.CreateUserAsync

Set permissions on a collection or document DocumentClient.CreatePermissionAsync

Get a list of a user's permissions DocumentClient.ReadUserAsync
DocumentClient.ReadPermissionFeedAsync

https://github.com/Azure/azure-documentdb-net/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/UserManagement/Program.cs#L81
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createuserasync.aspx
https://github.com/Azure/azure-documentdb-net/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/UserManagement/Program.cs#L85
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createpermissionasync.aspx
https://github.com/Azure/azure-documentdb-net/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/UserManagement/Program.cs#L218
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readuserasync.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readpermissionfeedasync.aspx

Rajesh Nagpal • mimig • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • Mo Derakhshani • Andrew Liu • PRmerger

• Jason Card • Ryan CrawCour • Ross McAllister

DocumentDB APIs and SDKs
11/22/2016 • 5 min to read • Edit on GitHub

Contributors

DocumentDB Node.js API and SDK

Download SDKDownload SDK NPM

API documentationAPI documentation Node.js API reference documentation

SDK installation instructionsSDK installation instructions Installation instructions

Contribute to SDKContribute to SDK GitHub

SamplesSamples Node.js code samples

Get started tutorialGet started tutorial Get started with the Node.js SDK

Web app tutorialWeb app tutorial Build a Node.js web application using DocumentDB

Current supported platformCurrent supported platform Node.js v0.10
Node.js v0.12
Node.js v4.2.0

Release notes

1.10.0

1.9.0

Added support for cross partition parallel queries.

Added support for TOP/ORDER BY queries for partitioned collections.

Added retry policy support for throttled requests. (Throttled requests receive a request rate too large

exception, error code 429.) By default, DocumentDB retries nine times for each request when error code 429 is

encountered, honoring the retryAfter time in the response header. A fixed retry interval time can now be set as

part of the RetryOptions property on the ConnectionPolicy object if you want to ignore the retryAfter time

returned by server between the retries. DocumentDB now waits for a maximum of 30 seconds for each

request that is being throttled (irrespective of retry count) and returns the response with error code 429. This

time can also be overriden in the RetryOptions property on ConnectionPolicy object.

DocumentDB now returns x-ms-throttle-retry-count and x-ms-throttle-retry-wait-time-ms as the response

headers in every request to denote the throttle retry count and the cummulative time the request waited

between the retries.

The RetryOptions class was added, exposing the RetryOptions property on the ConnectionPolicy class that can

be used to override some of the default retry options.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-sdk-node.md
https://github.com/rnagpal
https://github.com/mimig1
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/moderakh
https://github.com/aliuy
https://github.com/PRmerger
https://github.com/v-jacard
https://github.com/ryancrawcour
https://github.com/rmca14
https://www.npmjs.com/package/documentdb
http://azure.github.io/azure-documentdb-node/DocumentClient.html
http://azure.github.io/azure-documentdb-node/
https://github.com/Azure/azure-documentdb-node/tree/master/source
https://nodejs.org/en/blog/release/v0.10.0/
https://nodejs.org/en/blog/release/v0.12.0/
https://nodejs.org/en/blog/release/v4.2.0/

1.8.0

1.7.0

1.6.0

1.5.6

1.5.5

1.5.4

1.5.3

1.5.2

1.5.1

1.5.0

1.4.0

1.3.0

1.2.2

1.2.1

1.2.0

1.1.0

Added the support for multi-region database accounts.

Added the support for Time To Live(TTL) feature for documents.

Implemented partitioned collections and user-defined performance levels.

Fixed RangePartitionResolver.resolveForRead bug where it was not returning links due to a bad concat of

results.

Fixed hashParitionResolver resolveForRead(): When no partition key supplied was throwing exception, instead

of returning a list of all registered links.

Fixes issue #100 - Dedicated HTTPS Agent: Avoid modifying the global agent for DocumentDB purposes. Use a

dedicated agent for all of the lib’s requests.

Fixes issue #81 - Properly handle dashes in media ids.

Fixes issue #95 - EventEmitter listener leak warning.

Fixes issue #92 - rename folder Hash to hash for case sensitive systems.

Implement sharding support by adding hash & range partition resolvers.

Implement Upsert. New upsertXXX methods on documentClient.

Skipped to bring version numbers in alignment with other SDKs.

Split Q promises wrapper to new repository.

Update to package file for npm registry.

Implements ID Based Routing.

Fixes Issue #49 - current property conflicts with method current().

Added support for GeoSpatial index.

Validates id property for all resources. Ids for resources cannot contain ?, /, #, //, characters or end with a

space.

Adds new header "index transformation progress" to ResourceResponse.

Implements V2 indexing policy.

https://github.com/Azure/azure-documentdb-node/issues/100
https://github.com/Azure/azure-documentdb-node/issues/81
https://github.com/Azure/azure-documentdb-node/issues/95
https://github.com/Azure/azure-documentdb-node/issues/90
https://github.com/Azure/azure-documentdb-node/issues/49

1.0.3

1.0.2

1.0.1

1.0.0

Release & Retirement Dates

WARNING

VERSIONVERSION RELEASE DATERELEASE DATE RETIREMENT DATERETIREMENT DATE

1.10.0 October 03, 2016 ---

1.9.0 July 07, 2016 ---

1.8.0 June 14, 2016 ---

1.7.0 April 26, 2016 ---

1.6.0 March 29, 2016 ---

1.5.6 March 08, 2016 ---

1.5.5 February 02, 2016 ---

1.5.4 February 01, 2016 ---

1.5.2 January 26, 2016 ---

1.5.2 January 22, 2016 ---

1.5.1 January 4, 2016 ---

Issue #40 - Implemented eslint and grunt configurations in the core and promise SDK.

Issue #45 - Promises wrapper does not include header with error.

Implemented ability to query for conflicts by adding readConflicts, readConflictAsync, and queryConflicts.

Updated API documentation.

Issue #41 - client.createDocumentAsync error.

GA SDK.

Microsoft will provide notification at least 12 months12 months in advance of retiring an SDK in order to smooth the

transition to a newer/supported version.

New features and functionality and optimizations are only added to the current SDK, as such it is recommend that

you always upgrade to the latest SDK version as early as possible.

Any request to DocumentDB using a retired SDK will be rejected by the service.

All versions of the Azure DocumentDB SDK for Node.js prior to version 1.0.01.0.0 will be retired on February 29, 2016February 29, 2016 .

https://github.com/Azure/azure-documentdb-node/issues/40
https://github.com/Azure/azure-documentdb-node/issues/45
https://github.com/Azure/azure-documentdb-node/issues/41

1.5.0 December 31, 2015 ---

1.4.0 October 06, 2015 ---

1.3.0 October 06, 2015 ---

1.2.2 September 10, 2015 ---

1.2.1 August 15, 2015 ---

1.2.0 August 05, 2015 ---

1.1.0 July 09, 2015 ---

1.0.3 June 04, 2015 ---

1.0.2 May 23, 2015 ---

1.0.1 May 15, 2015 ---

1.0.0 April 08, 2015 ---

0.9.4-prerelease April 06, 2015 February 29, 2016

0.9.3-prerelease January 14, 2015 February 29, 2016

0.9.2-prerelease December 18, 2014 February 29, 2016

0.9.1-prerelease August 22, 2014 February 29, 2016

0.9.0-prerelease August 21, 2014 February 29, 2016

VERSIONVERSION RELEASE DATERELEASE DATE RETIREMENT DATERETIREMENT DATE

FAQ

1 . How w il l customers be notified of the retir ing SDK?1 . How w il l customers be notified of the retir ing SDK?

Microsoft will provide 12 month advance notification to the end of support of the retiring SDK in order to

facilitate a smooth transition to a supported SDK. Further, customers will be notified through various

communication channels – Azure Management Portal, Developer Center, blog post, and direct communication to

assigned service administrators.

2 . Can customers author applications using a "to-be" retired DocumentDB SDK dur ing the 122 . Can customers author applications using a "to-be" retired DocumentDB SDK dur ing the 12

month per iod?month per iod?

Yes, customers will have full access to author, deploy and modify applications using the "to-be" retired

DocumentDB SDK during the 12 month grace period. During the 12 month grace period, customers are advised

to migrate to a newer supported version of DocumentDB SDK as appropriate.

3 . Can customers author and modify applications using a retired DocumentDB SDK after the 123 . Can customers author and modify applications using a retired DocumentDB SDK after the 12

month notification per iod?month notification per iod?

After the 12 month notification period, the SDK will be retired. Any access to DocumentDB by an applications

See also

using a retired SDK will not be permitted by the DocumentDB platform. Further, Microsoft will not provide

customer support on the retired SDK.

4 . What happens to Customer ’s running applications that are using unsupported DocumentDB SDK4 . What happens to Customer ’s running applications that are using unsupported DocumentDB SDK

vers ion?vers ion?

Any attempts made to connect to the DocumentDB service with a retired SDK version will be rejected.

5 . Will new features and functionality be applied to all non-retired SDKs5 . Will new features and functionality be applied to all non-retired SDKs

New features and functionality will only be added to new versions. If you are using an old, non-retired, version of

the SDK your requests to DocumentDB will still function as previous but you will not have access to any new

capabilities.

6 . What should I do if I cannot update my application before a cut-off date6 . What should I do if I cannot update my application before a cut-off date

We recommend that you upgrade to the latest SDK as early as possible. Once an SDK has been tagged for

retirement you will have 12 months to update your application. If, for whatever reason, you cannot complete your

application update within this timeframe then please contact the DocumentDB Team and request their assistance

before the cutoff date.

To learn more about DocumentDB, see Microsoft Azure DocumentDB service page.

mailto:askdocdb@microsoft.com
https://azure.microsoft.com/services/documentdb/

Mo Derakhshani • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • mimig • PRmerger • Andrew Liu • Ryan CrawCour

• Ross McAllister

DocumentDB Node.js examples
11/15/2016 • 2 min to read • Edit on GitHub

Contributors

Database examples

TASKTASK API REFERENCEAPI REFERENCE

Create a database DocumentClient.createDatabase

Query an account for a database DocumentClient.queryDatabases

Read a database by Id DocumentClient.readDatabase

List databases for an account DocumentClient.readDatabases

Delete a database DocumentClient.deleteDatabase

Collection examples

Sample solutions that perform CRUD operations and other common operations on Azure DocumentDB resources

are included in the azure-documentdb-nodejs GitHub repository. This article provides:

Links to the tasks in each of the Node.js example project files.

Links to the related API reference content.

Prerequis itesPrerequis ites

1. You need an Azure account to use these Node.js examples:

NOTE

You can open an Azure account for free: You get credits you can use to try out paid Azure services, and

even after they're used up you can keep the account and use free Azure services, such as Websites. Your

credit card will never be charged, unless you explicitly change your settings and ask to be charged.

You can activate Visual Studio subscriber benefits: Your Visual Studio subscription gives you

credits every month that you can use for paid Azure services.

2. You also need the Node.js SDK.

Each sample is self-contained, it sets itself up and cleans up after itself. As such, the samples issue multiple calls to

DocumentClient.createCollection. Each time this is done your subscription will be billed for 1 hour of usage per the

performance tier of the collection being created.

The app.js file of the DatabaseManagement project shows how to perform the following tasks.

The app.js file of the CollectionManagement project shows how to perform the following tasks.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-nodejs-samples.md
https://github.com/moderakh
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/mimig1
https://github.com/PRmerger
https://github.com/aliuy
https://github.com/ryancrawcour
https://github.com/rmca14
https://github.com/Azure/azure-documentdb-node/tree/master/samples
https://azure.microsoft.com/pricing/free-trial/
https://azure.microsoft.com/pricing/member-offers/msdn-benefits-details/
http://azure.github.io/azure-documentdb-node/DocumentClient.html#createCollection
https://github.com/Azure/azure-documentdb-node/blob/master/samples/DatabaseManagement/app.js
https://github.com/Azure/azure-documentdb-node/tree/master/samples/DatabaseManagement
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DatabaseManagement/app.js#L121-L131
http://azure.github.io/azure-documentdb-node/DocumentClient.html#createDatabase
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DatabaseManagement/app.js#L146-L171
http://azure.github.io/azure-documentdb-node/DocumentClient.html#queryDatabases
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DatabaseManagement/app.js#L89-L99
http://azure.github.io/azure-documentdb-node/DocumentClient.html#readDatabase
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DatabaseManagement/app.js#L111-L119
http://azure.github.io/azure-documentdb-node/DocumentClient.html#readDatabase
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DatabaseManagement/app.js#L133-L144
http://azure.github.io/azure-documentdb-node/DocumentClient.html#deleteDatabase
https://github.com/Azure/azure-documentdb-node/blob/master/samples/CollectionManagement/app.js
https://github.com/Azure/azure-documentdb-node/tree/master/samples/CollectionManagement

TASKTASK API REFERENCEAPI REFERENCE

Create a collection DocumentClient.createCollection

Read a list of all collections in a database DocumentClient.readCollections

Get a collection by _self DocumentClient.readCollection

Get a collection by Id DocumentClient.readCollection

Get performance tier of a collection DocumentQueryable.queryOffers

Change performance tier of a collection DocumentClient.replaceOffer

Delete a collection DocumentClient.deleteCollection

Document examples

TASKTASK API REFERENCEAPI REFERENCE

Create documents DocumentClient.createDocument

Read the document feed for a collection DocumentClient.readDocument

Read a document by ID DocumentClient.readDocument

Read document only if document has changed DocumentClient.readDocument
RequestOptions.accessCondition

Query for documents DocumentClient.queryDocuments

Replace a document DocumentClient.replaceDocument

Replace document with conditional ETag check DocumentClient.replaceDocument
RequestOptions.accessCondition

Delete a document DocumentClient.deleteDocument

Indexing examples

TASKTASK API REFERENCEAPI REFERENCE

Create a collection with default indexing DocumentClient.createDocument

Manually index a specific document indexingDirective: 'include'

Manually exclude a specific document from the index RequestOptions.indexingDirective

The app.js file of the DocumentManagement project shows how to perform the following tasks.

The app.js file of the IndexManagement project shows how to perform the following tasks.

https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.CollectionManagement/app.js#L97-L118
http://azure.github.io/azure-documentdb-node/DocumentClient.html#createCollection
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.CollectionManagement/app.js#L120-L130
http://azure.github.io/azure-documentdb-node/DocumentClient.html#readCollections
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.CollectionManagement/app.js#L132-L141
http://azure.github.io/azure-documentdb-node/DocumentClient.html#readCollection
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.CollectionManagement/app.js#L143-L156
http://azure.github.io/azure-documentdb-node/DocumentClient.html#readCollection
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.CollectionManagement/app.js#L158-L186
http://azure.github.io/azure-documentdb-node/DocumentClient.html#queryOffers
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.CollectionManagement/app.js#L188-L202
http://azure.github.io/azure-documentdb-node/DocumentClient.html#replaceOffer
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.CollectionManagement/app.js#L204-L215
http://azure.github.io/azure-documentdb-node/DocumentClient.html#deleteCollection
https://github.com/Azure/azure-documentdb-node/blob/master/samples/DocumentManagement/app.js
https://github.com/Azure/azure-documentdb-node/tree/master/samples/DocumentManagement
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DocumentManagement/app.js#L153-L177
http://azure.github.io/azure-documentdb-node/DocumentClient.html#createDocument
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DocumentManagement/app.js#L179-L189
http://azure.github.io/azure-documentdb-node/DocumentClient.html#readDocument
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DocumentManagement/app.js#L191-L201
http://azure.github.io/azure-documentdb-node/DocumentClient.html#readDocument
https://github.com/Azure/azure-documentdb-node/blob/0778eadea7abb2af41e8c22a239dc872c584f421/samples/DocumentManagement/app.js#L79-L107
http://azure.github.io/azure-documentdb-node/DocumentClient.html#readDocument
http://azure.github.io/azure-documentdb-node/global.html#RequestOptions
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DocumentManagement/app.js#L82-L110
http://azure.github.io/azure-documentdb-node/DocumentClient.html#queryDocuments
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DocumentManagement/app.js#L112-L119
http://azure.github.io/azure-documentdb-node/DocumentClient.html#replaceDocument
https://github.com/Azure/azure-documentdb-node/blob/0778eadea7abb2af41e8c22a239dc872c584f421/samples/DocumentManagement/app.js#L147-L164
http://azure.github.io/azure-documentdb-node/DocumentClient.html#replaceDocument
http://azure.github.io/azure-documentdb-node/global.html#RequestOptions
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DocumentManagement/app.js#L122-L133
http://azure.github.io/azure-documentdb-node/DocumentClient.html#deleteDocument
https://github.com/Azure/azure-documentdb-node/blob/master/samples/IndexManagement/app.js
https://github.com/Azure/azure-documentdb-node/tree/master/samples/IndexManagement
http://azure.github.io/azure-documentdb-node/DocumentClient.html
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.IndexManagement/app.js#L185-L238
http://azure.github.io/azure-documentdb-node/global.html#indexingDirective
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.IndexManagement/app.js#L120-L183
http://azure.github.io/azure-documentdb-node/global.html#RequestOptions

Use lazy indexing for bulk import or read heavy collections IndexingMode.Lazy

Include specific paths of a document in indexing IndexingPolicy.IncludedPaths

Exclude certain paths from indexing ExcludedPath

Allow a scan on a string path during a range operation ExcludedPath.EnableScanInQuery

Create a range index on a string path DocumentClient.queryDocument

Create a collection with default indexPolicy, then update this
online

DocumentClient.createCollection
DocumentClient.replaceCollection#replaceCollection

TASKTASK API REFERENCEAPI REFERENCE

Server-side programming examples

TASKTASK API REFERENCEAPI REFERENCE

Create a stored procedure DocumentClient.createStoredProcedure

Execute a stored procedure DocumentClient.executeStoredProcedure

Partitioning examples

TASKTASK API REFERENCEAPI REFERENCE

Use a HashPartitionResolver HashPartitionResolver

For more information about indexing, see DocumentDB indexing policies.

The app.js file of the ServerSideScripts project shows how to perform the following tasks.

For more information about server-side programming, see DocumentDB server-side programming: Stored

procedures, database triggers, and UDFs.

The app.js file of the Partitioning project shows how to perform the following tasks.

For more information about partitioning data in DocumentDB, see Partition and scale data in DocumentDB.

https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.IndexManagement/app.js#L240-L269
http://azure.github.io/azure-documentdb-node/global.html#IndexingMode
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.IndexManagement/app.js#L433-L444
http://azure.github.io/azure-documentdb-node/global.html#IndexingPolicy
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.IndexManagement/app.js#L427-L450
http://azure.github.io/azure-documentdb-node/global.html#IndexingPolicy
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.IndexManagement/app.js#L271-L347
http://azure.github.io/azure-documentdb-node/global.html#FeedOptions
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.IndexManagement/app.js#L349-L425
http://azure.github.io/azure-documentdb-node/DocumentClient.html#queryDocument
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.IndexManagement/app.js#L519-L614
http://azure.github.io/azure-documentdb-node/DocumentClient.html#createCollection
http://azure.github.io/azure-documentdb-node/DocumentClient.html
https://github.com/Azure/azure-documentdb-node/blob/master/samples/ServerSideScripts/app.js
https://github.com/Azure/azure-documentdb-node/tree/master/samples/ServerSideScripts
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.ServerSideScripts/app.js#L44-L71
http://azure.github.io/azure-documentdb-node/DocumentClient.html#createStoredProcedure
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.ServerSideScripts/app.js#L73-L90
http://azure.github.io/azure-documentdb-node/DocumentClient.html#executeStoredProcedure
https://github.com/Azure/azure-documentdb-node/blob/master/samples/Partitioning/app.js
https://github.com/Azure/azure-documentdb-node/tree/master/samples/Partitioning
https://github.com/Azure/azure-documentdb-node/blob/ce0fc3c4e70b0279091a1e03620a668d93a14fc2/samples/Partitioning/app.js#L53-L103
http://azure.github.io/azure-documentdb-node/HashPartitionResolver.html

Rajesh Nagpal • mimig • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • PRmerger • Andrew Liu • Ross McAllister

• Ryan CrawCour • Andy Pasic

DocumentDB APIs and SDKs
11/22/2016 • 4 min to read • Edit on GitHub

Contributors

DocumentDB Python API and SDK

Download SDKDownload SDK PyPI

API documentationAPI documentation Python API reference documentation

SDK installation instructionsSDK installation instructions Python SDK installation instructions

Contribute to SDKContribute to SDK GitHub

Get startedGet started Get started with the Python SDK

Current supported platformCurrent supported platform Python 2.7 and Python 3.5

Release notes

2.0.1

2.0.0

1.9.0

Made editorial changes to documentation comments.

Added support for Python 3.5.

Added support for connection pooling using a requests module.

Added support for session consistency.

Added support for TOP/ORDERBY queries for partitioned collections.

Added retry policy support for throttled requests. (Throttled requests receive a request rate too large

exception, error code 429.) By default, DocumentDB retries nine times for each request when error code 429

is encountered, honoring the retryAfter time in the response header. A fixed retry interval time can now be set

as part of the RetryOptions property on the ConnectionPolicy object if you want to ignore the retryAfter time

returned by server between the retries. DocumentDB now waits for a maximum of 30 seconds for each

request that is being throttled (irrespective of retry count) and returns the response with error code 429. This

time can also be overriden in the RetryOptions property on ConnectionPolicy object.

DocumentDB now returns x-ms-throttle-retry-count and x-ms-throttle-retry-wait-time-ms as the response

headers in every request to denote the throttle retry count and the cummulative time the request waited

between the retries.

Removed the RetryPolicy class and the corresponding property (retry_policy) exposed on the document_client

class and instead introduced a RetryOptions class exposing the RetryOptions property on ConnectionPolicy

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-sdk-python.md
https://github.com/rnagpal
https://github.com/mimig1
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/PRmerger
https://github.com/aliuy
https://github.com/rmca14
https://github.com/ryancrawcour
https://github.com/v-anpasi
https://pypi.python.org/pypi/pydocumentdb
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.html
http://azure.github.io/azure-documentdb-python/
https://github.com/Azure/azure-documentdb-python
https://www.python.org/downloads/
https://www.python.org/downloads/
https://pypi.python.org/pypi/pydocumentdb/2.0.1
https://pypi.python.org/pypi/pydocumentdb/2.0.0
https://pypi.python.org/pypi/pydocumentdb/1.9.0

1.8.0

1.7.0

1.6.1

1.6.0

1.5.0

1.4.2

1.2.0

1.1.0

1.0.1

1.0.0

Release & retirement dates

WARNING

VERSIONVERSION RELEASE DATERELEASE DATE RETIREMENT DATERETIREMENT DATE

2.0.1 October 30, 2016 ---

class that can be used to override some of the default retry options.

Added the support for multi-region database accounts.

Added the support for Time To Live(TTL) feature for documents.

Bug fixes related to server side partitioning to allow special characters in partitionkey path.

Implemented partitioned collections and user-defined performance levels.

Add Hash & Range partition resolvers to assist with sharding applications across multiple partitions.

Implement Upsert. New UpsertXXX methods added to support Upsert feature.

Implement ID Based Routing. No public API changes, all changes internal.

Supports GeoSpatial index.

Validates id property for all resources. Ids for resources cannot contain ?, /, #, \, characters or end with a

space.

Adds new header "index transformation progress" to ResourceResponse.

Implements V2 indexing policy.

Supports proxy connection.

GA SDK.

Microsoft will provide notification at least 12 months12 months in advance of retiring an SDK in order to smooth the

transition to a newer/supported version.

New features and functionality and optimizations are only added to the current SDK, as such it is recommend

that you always upgrade to the latest SDK version as early as possible.

Any request to DocumentDB using a retired SDK will be rejected by the service.

All versions of the Azure DocumentDB SDK for Python prior to version 1.0.01.0.0 will be retired on February 29, 2016February 29, 2016 .

https://pypi.python.org/pypi/pydocumentdb/1.8.0
https://pypi.python.org/pypi/pydocumentdb/1.7.0
https://pypi.python.org/pypi/pydocumentdb/1.6.1
https://pypi.python.org/pypi/pydocumentdb/1.6.0
https://pypi.python.org/pypi/pydocumentdb/1.5.0
https://pypi.python.org/pypi/pydocumentdb/1.4.2
https://pypi.python.org/pypi/pydocumentdb/1.2.0
https://pypi.python.org/pypi/pydocumentdb/1.1.0
https://pypi.python.org/pypi/pydocumentdb/1.0.1
https://pypi.python.org/pypi/pydocumentdb/1.0.0

2.0.0 September 29, 2016 ---

1.9.0 July 07, 2016 ---

1.8.0 June 14, 2016 ---

1.7.0 April 26, 2016 ---

1.6.1 April 08, 2016 ---

1.6.0 March 29, 2016 ---

1.5.0 January 03, 2016 ---

1.4.2 October 06, 2015 ---

1.4.1 October 06, 2015 ---

1.2.0 August 06, 2015 ---

1.1.0 July 09, 2015 ---

1.0.1 May 25, 2015 ---

1.0.0 April 07, 2015 ---

0.9.4-prelease January 14, 2015 February 29, 2016

0.9.3-prelease December 09, 2014 February 29, 2016

0.9.2-prelease November 25, 2014 February 29, 2016

0.9.1-prelease September 23, 2014 February 29, 2016

0.9.0-prelease August 21, 2014 February 29, 2016

VERSIONVERSION RELEASE DATERELEASE DATE RETIREMENT DATERETIREMENT DATE

FAQ

1 . How w il l customers be notified of the retir ing SDK?1 . How w il l customers be notified of the retir ing SDK?

Microsoft will provide 12 month advance notification to the end of support of the retiring SDK in order to

facilitate a smooth transition to a supported SDK. Further, customers will be notified through various

communication channels – Azure Management Portal, Developer Center, blog post, and direct communication to

assigned service administrators.

2 . Can customers author applications using a "to-be" retired DocumentDB SDK dur ing the 122 . Can customers author applications using a "to-be" retired DocumentDB SDK dur ing the 12

month per iod?month per iod?

Yes, customers will have full access to author, deploy and modify applications using the "to-be" retired

DocumentDB SDK during the 12 month grace period. During the 12 month grace period, customers are advised

to migrate to a newer supported version of DocumentDB SDK as appropriate.

See also

3 . Can customers author and modify applications using a retired DocumentDB SDK after the 123 . Can customers author and modify applications using a retired DocumentDB SDK after the 12

month notification per iod?month notification per iod?

After the 12 month notification period, the SDK will be retired. Any access to DocumentDB by an applications

using a retired SDK will not be permitted by the DocumentDB platform. Further, Microsoft will not provide

customer support on the retired SDK.

4 . What happens to Customer ’s running applications that are using unsupported DocumentDB SDK4 . What happens to Customer ’s running applications that are using unsupported DocumentDB SDK

vers ion?vers ion?

Any attempts made to connect to the DocumentDB service with a retired SDK version will be rejected.

5 . Will new features and functionality be applied to all non-retired SDKs5 . Will new features and functionality be applied to all non-retired SDKs

New features and functionality will only be added to new versions. If you are using an old, non-retired, version of

the SDK your requests to DocumentDB will still function as previous but you will not have access to any new

capabilities.

6 . What should I do if I cannot update my application before a cut-off date6 . What should I do if I cannot update my application before a cut-off date

We recommend that you upgrade to the latest SDK as early as possible. Once an SDK has been tagged for

retirement you will have 12 months to update your application. If, for whatever reason, you cannot complete

your application update within this timeframe then please contact the DocumentDB Team and request their

assistance before the cutoff date.

To learn more about DocumentDB, see Microsoft Azure DocumentDB service page.

mailto:askdocdb@microsoft.com
https://azure.microsoft.com/services/documentdb/

Mo Derakhshani • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • mimig • Andrew Liu • Ryan CrawCour

DocumentDB Python examples
11/15/2016 • 1 min to read • Edit on GitHub

Contributors

Database examples

TASKTASK API REFERENCEAPI REFERENCE

Create a database document_client.CreateDatabase

Query an account for a database document_client.QueryDatabases

Read a database by Id document_client.ReadDatabase

List databases for an account document_client.ReadDatabases

Delete a database document_client.DeleteDatabase

Collection examples

Sample solutions that perform CRUD operations and other common operations on Azure DocumentDB resources

are included in the azure-documentdb-python GitHub repository. This article provides:

Links to the tasks in each of the Python example project files.

Links to the related API reference content.

Prerequis itesPrerequis ites

1. You need an Azure account to use these Python examples:

NOTE

You can open an Azure account for free: You get credits you can use to try out paid Azure services, and

even after they're used up you can keep the account and use free Azure services, such as Websites. Your

credit card will never be charged, unless you explicitly change your settings and ask to be charged.

You can activate Visual Studio subscriber benefits: Your Visual Studio subscription gives you

credits every month that you can use for paid Azure services.

2. You also need the Python SDK.

Each sample is self-contained, it sets itself up and cleans up after itself. As such, the samples issue multiple calls to

document_client.CreateCollection. Each time this is done your subscription will be billed for 1 hour of usage per the

performance tier of the collection being created.

The Program.py file of the DatabaseManagement project shows how to perform the following tasks.

The Program.py file of the CollectionManagement project shows how to perform the following tasks.

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-python-samples.md
https://github.com/moderakh
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/mimig1
https://github.com/aliuy
https://github.com/ryancrawcour
https://github.com/Azure/azure-documentdb-python/tree/master/samples
https://azure.microsoft.com/pricing/free-trial/
https://azure.microsoft.com/pricing/member-offers/msdn-benefits-details/
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html
https://github.com/Azure/azure-documentdb-python/tree/master/samples/DatabaseManagement/Program.py
https://github.com/Azure/azure-documentdb-python/tree/master/samples/DatabaseManagement
https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/DatabaseManagement/Program.py#L65-L76
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html
https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/DatabaseManagement/Program.py#L49-L62
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html
https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/DatabaseManagement/Program.py#L79-L96
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html
https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/DatabaseManagement/Program.py#L99-L110
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html
https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/DatabaseManagement/Program.py#L113-L126
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html
https://github.com/Azure/azure-documentdb-python/tree/master/samples/CollectionManagement/Program.py
https://github.com/Azure/azure-documentdb-python/tree/master/samples/CollectionManagement

TASKTASK API REFERENCEAPI REFERENCE

Create a collection document_client.CreateCollection

Read a list of all collections in a database document_client.ListCollections

Get a collection by Id document_client.ReadCollection

Get performance tier of a collection DocumentQueryable.QueryOffers

Change performance tier of a collection document_client.ReplaceOffer

Delete a collection document_client.DeleteCollection

https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/CollectionManagement/Program.py#L84-L135
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html#CreateCollection
https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/CollectionManagement/Program.py#L198-L225
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html#CreateCollection
https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/CollectionManagement/Program.py#L178-L195
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html#CreateCollection
https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/CollectionManagement/Program.py#L139-L161
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html#CreateCollection
https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/CollectionManagement/Program.py#L163-L175
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html#CreateCollection
https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/CollectionManagement/Program.py#L212-L225
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html#CreateCollection

mimig • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil

DocumentDB SQL query cheat sheet PDF
11/15/2016 • 1 min to read • Edit on GitHub

Contributors

Download the DocumentDB SQL query cheat sheet PDF

The DocumentDB SQL Query Cheat SheetDocumentDB SQL Query Cheat Sheet helps you quickly write queries for DocumentDB data by displaying

common database queries, keywords, built-in functions, and operators in an easy to print PDF reference sheet.

DocumentDB supports relational, hierarchical, and spatial querying of JSON documents using SQL without

specifying a schema or secondary indexes. In addition to the standard ANSI-SQL keywords and operators,

DocumentDB supports JavaScript user defined functions (UDFs), JavaScript operators, and a multitude of built-in

functions.

Write your queries faster by downloading the SQL query cheat sheet and using it as a quick reference. The SQL

cheat sheet PDF shows common queries used to retrieve data from two example JSON documents. To keep it

nearby, you can print the single-sided SQL query cheat sheet in page letter size (8.5 x 11 in.).

Download the SQL cheat sheet here: Download the SQL cheat sheet here: Microsoft Azure DocumentDB SQL cheat sheetMicrosoft Azure DocumentDB SQL cheat sheet

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-sql-query-cheat-sheet.md
https://github.com/mimig1
https://github.com/kiwhit
https://github.com/tysonn
http://go.microsoft.com/fwlink/?LinkId=623215

More help with writing SQL queries

Release notes

For a walk through of the query options available in DocumentDB, see Query DocumentDB.

For the related reference documentation, see DocumentDB SQL Query Language.

Updated on 7/29/2016 to include TOP.

https://msdn.microsoft.com/library/azure/dn782250.aspx

Andrew Liu • mimig • Andy Pasic • Kim Whitlatch (Beyondsoft Corporation) • Tyson Nevil • Ross McAllister

Community portal
11/22/2016 • 9 min to read • Edit on GitHub

Contributors

Community spotlight

documentdb-lumenize

DocumentDB Studio

DoQmentDB

Swagger REST API for DocumentDB

fluent-plugin-documentdb

News, blogs, and articles

Let us promote your project! Show us the awesome project you're working on with DocumentDB, and we will help

share your genius with the world. To submit your project, send us an e-mail at: askdocdb@microsoft.com.

by Larry Maccherone

Aggregations (Group-by, Pivot-table, and N-dimensional Cube) and Time Series Transformations as Stored

Procedures in DocumentDB.

Check it out on Github and npm.

by Ming Liu

A client management viewer/explorer for Microsoft Azure DocumentDB service.

Check it out on Github.

by Ariel Mashraki

DoQmentDB is a Node.js promise-based client, that provides a MongoDB-like layer on top of DocumentDB.

Check it out on Github and npm.

by Howard Edidin

A DocumentDB REST API Swagger file that can be easily deployed as an API App.

Check it out on Github.

by Yoichi Kawasaki

fluent-plugin-documentdb is a Fluentd plugin for outputting to Azure DocumentDB.

Check it out on Github and rubygems.

Find more open source DocumentDB projects on GitHub.

You can stay up-to-date with the latest DocumentDB news and features by following our blog.

Community posts :Community posts :

https://github.com/Microsoft/azure-docs/blob/master/articles/documentdb/documentdb-community.md
https://github.com/aliuy
https://github.com/mimig1
https://github.com/v-anpasi
https://github.com/kiwhit
https://github.com/tysonn
https://github.com/rmca14
mailto:askdocdb@microsoft.com
https://github.com/lmaccherone/documentdb-lumenize
https://www.npmjs.com/package/lumenize
https://github.com/mingaliu/DocumentDBStudio
https://github.com/a8m/doqmentdb
https://www.npmjs.com/package/doqmentdb
https://github.com/HEDIDIN/DocumentDB-REST/tree/master/DocumentDBRestApi
https://github.com/yokawasa/fluent-plugin-documentdb
https://rubygems.org/gems/fluent-plugin-documentdb
https://github.com/search?p=4&q=documentdb&type=Repositories
https://azure.microsoft.com/blog/tag/documentdb/

Events and recordings

Recent and upcoming events

EVENT NAMEEVENT NAME SPEAKERSPEAKER LOCATIONLOCATION DATEDATE HASHTAGHASHTAG

Wintellect webinar: An
Introduction to Azure
DocumentDB

Josh Lane Online December 15, 2016
1pm EST

n/a

Previous events and recordings

EVENT NAMEEVENT NAME SPEAKERSPEAKER LOCATIONLOCATION DATEDATE RECORDINGRECORDING

Connect(); // 2016 Kirill Gavrylyuk New York, NY November 16-18,
2016

Channel 9 Connect();
videos

Capital City .NET
Users Group

Santosh Hari Tallahassee, FL November 3, 2016 n/a

A Journey to SocialA Journey to Social - by Matías Quaranta

Azure DocumentDB protocol support for MongoDB in Prev iew , my test w ith S itecoreAzure DocumentDB protocol support for MongoDB in Prev iew , my test w ith S itecore - by Mathieu

Benoit

Going Social w ith DocumentDBGoing Social w ith DocumentDB - by Matías Quaranta

UWP, Azure App Serv ices , and DocumentDB Soup: A photo-shar ing appUWP, Azure App Serv ices , and DocumentDB Soup: A photo-shar ing app - by Eric Langland

Notifications for new or changed DocumentDB resources using Logic AppsNotifications for new or changed DocumentDB resources using Logic Apps - by Howard Edidin

Collecting logs in to Azure DocumentDB using fluent-plugin-documentdbCollecting logs in to Azure DocumentDB using fluent-plugin-documentdb - by Yoichi Kawasaki

DocumentDB rev is ited Part 1/2 – The theoryDocumentDB rev is ited Part 1/2 – The theory - by Peter Mannerhult

What to love and hate about Azure’s DocumentDBWhat to love and hate about Azure’s DocumentDB - by George Saadeh

Azure DocumentDB Server-S ide Scr iptingAzure DocumentDB Server-S ide Scr ipting - by Robert Sheldon

DocumentDB as a data s ink for Azure S tream AnalyticsDocumentDB as a data s ink for Azure S tream Analytics - by Jan Hentschel

Azure DocumentDB in production!Azure DocumentDB in production! - by Alexandre Walsh and Marc-Olivier Duval

Azure Search Indexers – DocumentDB Quer ies (Spanish)Azure Search Indexers – DocumentDB Quer ies (Spanish) - by Matthias Quaranta

Azure DocumentDB SQL query basics (Japanese)Azure DocumentDB SQL query basics (Japanese) - by Atsushi Yokohama

Data Points - Aurelia Meets DocumentDB: A Matchmaker ’s JourneyData Points - Aurelia Meets DocumentDB: A Matchmaker ’s Journey - by Julie Lerman

Infrastructure as Code and Continuous Deployment of a Node.js + Azure DocumentDB SolutionInfrastructure as Code and Continuous Deployment of a Node.js + Azure DocumentDB Solution -

by Thiago Almedia

Why DocumentDb Makes Good Business Sense for Some ProjectsWhy DocumentDb Makes Good Business Sense for Some Projects - by Samuel Uresin

Azure DocumentDB development moving forward – development of the Client class (1 of 2)Azure DocumentDB development moving forward – development of the Client class (1 of 2)

(Japanese)(Japanese) - by Atsushi Yokohama

Things you need to know when using Azure DocumentDB (Japanese)Things you need to know when using Azure DocumentDB (Japanese) - by Atsushi Yokohama

Dealing w ith RequestRateTooLarge er rors in Azure DocumentDB and testing per formanceDealing w ith RequestRateTooLarge er rors in Azure DocumentDB and testing per formance - by Azim

Uddin

Data Points - An Overv iew of Microsoft Azure DocumentDBData Points - An Overv iew of Microsoft Azure DocumentDB - by Julie Lerman

Using DocumentDB With F#Using DocumentDB With F# - by Jamie Dixon

Analys ing Application Logs w ith DocumentDBAnalys ing Application Logs w ith DocumentDB - by Vincent-Philippe Lauzon

Azure DocumentDB – Point in time BackupsAzure DocumentDB – Point in time Backups - by Juan Carlos Sanchez

Do you have a blog post, code sample, or case-study you'd like to share? Let us know!

Are you speaking at or hosting an event? Let us know how we can help!

https://medium.com/@Ealsur/a-journey-to-social-c47636bf25c9#.an669sx41
https://alwaysupalwayson.blogspot.ca/2016/05/azure-documentdb-protocol-support-for.html
https://blogs.msdn.microsoft.com/mvpawardprogram/2016/03/15/going-social-with-documentdb/
https://blogs.windows.com/buildingapps/2016/03/17/uwp-azure-app-services-and-documentdb-soup-a-photo-sharing-app/
http://unofficialism.info/posts/collecting-logs-into-azure-documentdb-using-fluent-plugin-documentdb/
https://peterintheazuresky.wordpress.com/2016/02/19/documentdb-revisited-part-12-the-theory/
http://blog.falafel.com/4-what-to-love-and-hate-about-azures-documentdb/
https://www.simple-talk.com/cloud/cloud-data/azure-documentdb-server-side-scripting/
http://janatdevelopment.com/2015/12/11/documentdb-as-a-data-sink-for-azure-stream-analytics/?utm_source=twitterfeed&utm_medium=twitter
http://blog.nexapp.ca/2015/11/30/azure-documentdb-in-production/
http://www.ealsur.com.ar/wp/index.php/2015/11/19/azure-search-indexers-documentdb-queries/
http://beachside.hatenablog.com/entry/2015/12/06/000045
https://msdn.microsoft.com/magazine/mt620011.aspx
http://www.talmeida.net/blog/2015/10/26/infrastructure-as-code-and-continuous-deployment-of-a-nodejs-azure-documentdb-solution
http://www.iquestllc.com/blogs/read/405/why-documentdb-makes-good-business-sense-for-some-projects
http://beachside.hatenablog.com/entry/2015/10/01/202734
http://beachside.hatenablog.com/entry/2015/10/01/202734
http://blogs.msdn.com/b/bigdatasupport/archive/2015/09/02/dealing-with-requestratetoolarge-errors-in-azure-documentdb-and-testing-documentdb-performance.aspx
https://msdn.microsoft.com/magazine/mt147238.aspx
https://jamessdixon.wordpress.com/2014/12/30/using-documentdb-with-f/
http://vincentlauzon.com/2015/09/06/analysing-application-logs-with-documentdb/
http://softwarejuancarlos.com/2015/09/06/azure-documentdb-point-in-time-backups/
mailto:askdocdb@microsoft.com
http://www.wintellect.com/software-development-training/register/webinar/30
https://twitter.com/jplane
mailto:askdocdb@microsoft.com
https://connectevent.microsoft.com/
https://channel9.msdn.com/Events/Connect
http://www.meetup.com/tally-dot-net/events/233768568/

Ignite 2016 DocumentDB team Atlanta, GA September 26-30,
2016

Slidedeck

DevTeach Ken Cenerelli Montreal, Canada July 4-8, 2016 NoSQL, No Problem,
Using Azure
DocumentDB

Integration and IoT Eldert Grootenboer Kontich, Belgium June 30, 2016 n/a

MongoDB World
2016

Kirill Gavrylyuk New York, New York June 28-29, 2016 n/a

Integration User
Group

Howard S. Edidin Webcast June 20, 2016 Do Logic Apps
support error
handling?

Meetup: UK Azure
User Group

Andrew Liu London, UK May 12, 2016 n/a

Meetup: ONETUG -
Orlando .NET User
Group

Santosh Hari Orlando, FL May 12, 2016 n/a

SQLBits XV Andrew Liu, Aravind
Ramachandran

Liverpool, UK May 4-7, 2016 n/a

Meetup: NYC .NET
Developers Group

Leonard Lobel New York City, NY April 21, 2016 n/a

Integration User
Group

Howard Edidin Webinar April 25, 2016 n/a

Global Azure
Bootcamp: SoCal

Leonard Lobel Orange, CA April 16, 2016 n/a

Global Azure
Bootcamp: Redmond

David Makogon Redmond, WA April 16, 2016 n/a

SQL Saturday #481 -
Israel 2016

Leonard Lobel HaMerkaz, Israel April 04, 2016 n/a

Build 2016 John Macintyre San Francisco, CA March 31, 2016 Delivering
Applications at Scale
with DocumentDB,
Azure's NoSQL
Document Database

SQL Saturday #505 -
Belgium 2016

Mihail Mateev Antwerp, Belgium March 19, 2016 n/a

Meetup: CloudTalk Kirat Pandya Bellevue, WA March 3, 2016 n/a

Meetup: Azure Austin Merwan Chinta Austin, TX January 28, 2016 n/a

EVENT NAMEEVENT NAME SPEAKERSPEAKER LOCATIONLOCATION DATEDATE RECORDINGRECORDING

https://myignite.microsoft.com/sessions?q=documentdb
http://www.slideshare.net/aliuy/pass-summit-2016-azure-documentdb-a-deep-dive-into-advanced-features
http://devteach.com/
http://www.slideshare.net/KenCenerelli
http://www.btug.be/events
https://www.mongodb.com/world16
http://www.integrationusergroup.com/do-logic-apps-support-error-handling/
http://www.integrationusergroup.com/do-logic-apps-support-error-handling/
http://www.meetup.com/UKAzureUserGroup/events/229673468/
http://www.meetup.com/ONETUG/events/230797164/
https://sqlbits.com/
http://www.meetup.com/NYC-NET-Developers/events/230396260/
http://www.integrationusergroup.com/#
http://xprs.imcreator.com/free/vishalishere/gab2016
https://www.eventbrite.com/e/2016-global-azure-bootcamp-redmond-wa-tickets-21387752343
http://www.sqlsaturday.com/481/Sessions/Details.aspx?sid=40912
https://build.microsoft.com/
https://channel9.msdn.com/Events/Build/2016/B840
http://www.sqlsaturday.com/505/Sessions/Details.aspx?sid=44217
http://www.meetup.com/CloudTalk/events/227963695/
http://www.meetup.com/azureaustin/events/228209275/

Meetup: msdevmtl Vincent-Philippe
Lauzon

Montreal, QC, Canada December 1, 2015 n/a

Meetup: SeattleJS David Makogon Seattle, WA November 12, 2015 n/a

PASS Summit 2015 Jeff Renz, Andrew
Hoh, Aravind
Ramachandran, John
Macintyre

Seattle, WA October 27-30, 2015 Developing Modern
Applications on Azure

CloudDevelop 2015 David Makogon, Ryan
Crawcour

Columbus, OH October 23, 2015 n/a

SQL Saturday #454 -
Turin 2015

Marco De Nittis Turin, Italy October 10, 2015 n/a

SQL Saturday #430 -
Sofia 2015

Leonard Lobel Sofia, Bulgaria October 10, 2015 n/a

SQL Saturday #444 -
Kansas City 2015

Jeff Renz Kansas City, MO October 3, 2015 n/a

SQL Saturday #429 -
Oporto 2015

Leonard Lobel Oporto, Portugal October 3, 2015 n/a

AzureCon David Makogon, Ryan
Crawcour, John
Macintyre

Virtual Event September 29, 2015 Azure data and
analytics platform
Working with NoSQL
Data in DocumentDB

SQL Saturday #434 -
Holland 2015

Leonard Lobel Utrecht, Netherlands September 26, 2015 Introduction to Azure
DocumentDB

SQL Saturday #441 -
Denver 2015

Jeff Renz Denver, CO September 19, 2015 n/a

Meetup: San
Francisco Bay Area
Azure Developers

Andrew Liu San Francisco, CA September 15, 2015 n/a

Belarus Azure User
Group Meet-Up

Alex Zyl Minsk, Belarus September 9, 2015 Introduction to
DocumentDB concept
overview, consistency
levels, sharding
strategies

NoSQL Now! David Makogon, Ryan
Crawcour

San Jose, CA August 18-20, 2015 n/a

@Scale Seattle Dharma Shukla Seattle, WA June 17, 2015 Schema Agnostic
Indexing with Azure
DocumentDB

Tech Refresh 2015 Bruno Lopes Lisbon, Portugal June 15, 2015 DocumentDB 101

EVENT NAMEEVENT NAME SPEAKERSPEAKER LOCATIONLOCATION DATEDATE RECORDINGRECORDING

http://www.meetup.com/msdevmtl/events/223839818/
http://www.meetup.com/seattlejs/events/220102664/
http://www.sqlpass.org/summit/2015/
https://www.youtube.com/watch?v=k5Z24HX-RyQ
http://www.clouddevelop.org/
http://www.sqlsaturday.com/454/Sessions/Details.aspx?sid=40130
http://www.sqlsaturday.com/430/Sessions/Details.aspx?sid=36090
http://www.sqlsaturday.com/444/Sessions/Details.aspx?sid=38576
http://www.sqlsaturday.com/429/Sessions/Details.aspx?sid=36089
https://azure.microsoft.com/azurecon/
https://channel9.msdn.com/events/Microsoft-Azure/AzureCon-2015/ACON207
https://channel9.msdn.com/Events/Microsoft-Azure/AzureCon-2015/ACON338
http://www.sqlsaturday.com/434/Sessions/Details.aspx?sid=36413
https://channel9.msdn.com/Blogs/Windows-Azure/SQL-Saturday-Holland-2015-Introduction-to-Azure-DocumentDB
http://www.sqlsaturday.com/441/Sessions/Details.aspx?sid=39191
http://www.meetup.com/bayazure/events/223943785/
https://www.facebook.com/events/786540124800276/
https://www.youtube.com/watch?v=Uc_qwWzJKH8
http://nosql2015.dataversity.net/
http://www.atscaleconference.com/
https://www.youtube.com/watch?v=VJQ_5qFFVP4
https://channel9.msdn.com/Events/DXPortugal/Tech-Refresh-2015
https://channel9.msdn.com/Events/DXPortugal/Tech-Refresh-2015/DPDEV01

SQL Saturday #417 -
Sri Lanka 2015

Mihail Mateev Colombo, Sri Lanka June 06, 2015 n/a

Meetup: Seattle
Scalability Meetup

Dharma Shukla Seattle, WA May 27, 2015 n/a

SQL Saturday #377 -
Kiev 2015

Mihail Mateev Kiev, Ukraine May 23, 2015 n/a

Database Month Dharma Shukla New York, NY May 19, 2015 Azure DocumentDB:
Massively-Scalable,‐
Multi-Tenant
Document Database
Service

Meetup: London SQL
Server User Group

Allan Mitchell London, UK May 19, 2015 n/a

DevIntersection Andrew Liu Scottsdale, AZ May 18-21, 2015 n/a

Meetup: Seattle Web
App Developers
Group

Andrew Liu Seattle, WA May 14, 2015 n/a

Ignite Andrew Hoh, John
Macintyre

Chicago, IL May 4-8, 2015 SELECT Latest FROM
DocumentDB video
DocumentDB and
Azure HDInsight:
Better Together video

Build 2015 Ryan Crawcour San Francisco, CA April 29 - May 1,
2015

Build the Next Big
Thing with Azure’s
NoSQL Service:
DocumentDB

Global Azure
Bootcamp 2015 -
Spain

Luis Ruiz Pavon,
Roberto Gonzalez

Madrid, Spain April 25, 2015 #DEAN DocumentDB
+ Express + AngularJS
+ NodeJS running on
Azure

Meetup: Azure
Usergroup Denmark

Christian Holm Diget Copenhagen,
Denmark

April 16, 2015 n/a

Meetup: Charlotte
Microsoft Cloud

Jamie Rance Charlotte, NC April 8, 2015 n/a

SQL Saturday #375 -
Silicon Valley 2015

Ike Ellis Mountain View, CA March 28, 2015 n/a

Meetup: Istanbul
Azure Meetup

Daron Yondem Istanbul, Turkey March 7, 2015 n/a

Meetup: Great Lakes
Area .Net User Group

Michael Collier Southfield, MI February 18, 2015 n/a

EVENT NAMEEVENT NAME SPEAKERSPEAKER LOCATIONLOCATION DATEDATE RECORDINGRECORDING

http://www.sqlsaturday.com/417/Sessions/Details.aspx?sid=21415
http://www.meetup.com/Seattle-Scalability-Meetup/events/204010442/
http://www.sqlsaturday.com/377/Sessions/Details.aspx?sid=20322
http://www.databasemonth.com/database/azure-documentdb
https://www.youtube.com/watch?v=iZsqBc3Dkbk
http://www.meetup.com/London-SQL-Server-User-Group/events/221525058/
https://devintersection.com/
http://www.meetup.com/Seattle-Web-App-Developers-Group/events/220591071/
http://ignite.microsoft.com/
https://azure.microsoft.com/documentation/videos/microsoft-ignite-2015-select-latest-from-microsoft-azure-documentdb/
https://azure.microsoft.com/documentation/videos/microsoft-ignite-2015-microsoft-azure-documentdb-and-azure-hdinsight-better-together/
http://www.buildwindows.com/
https://channel9.msdn.com/Events/Build/2015/2-729
http://azurebootcamp.es/
https://channel9.msdn.com/events/Developers-Spain-Events/Global-Azure-Bootcamp-2015/DEAN-DocumentDB--Express--AngularJS--NodeJS-running-on-Azure
http://www.meetup.com/Azure-Usergroup-Denmark/events/221026670/
http://www.meetup.com/Charlotte-Microsoft-Cloud/events/221503519/
http://www.sqlsaturday.com/375/Sessions/Details.aspx?sid=15289
http://www.meetup.com/istanbul-azure-meetup/events/220325538/
http://www.meetup.com/Great-Lakes-Area-NET-User-Group-MIGANG/events/220364576/

TechX Azure Magnus Mårtensson Stockholm, Sweden January 28-29, 2015 DocumentDB in Azure
the new NoSQL
option for the Cloud

EVENT NAMEEVENT NAME SPEAKERSPEAKER LOCATIONLOCATION DATEDATE RECORDINGRECORDING

Videos and Podcasts

SHOWSHOW SPEAKERSPEAKER DATEDATE EPISODEEPISODE

Azure Friday Kirill Gavrylyuk October 31, 2016 What's new in Azure
DocumentDB?

Channel 9: Microsoft +
Open Source

Jose Miguel Parrella April 14, 2016 From MEAN to DEAN in
Azure with Bitnami, VM Scale
Sets and DocumentDB

Wired2WinWebinar Sai Sankar Kunnathukuzhiyil March 9, 2016 Developing Solutions with
Azure DocumentDB

Integration User Group Han Wong February 17, 2016 Analyze and visualize non-
relational data with
DocumentDB + Power BI

The Azure Podcast Cale Teeter January 14, 2016 Episode 110: Using
DocumentDB & Search

Channel 9: Modern
Applications

Tara Shankar Jana December 13, 2016 Take a modern approach to
data in your apps

NinjaTips Miguel Quintero December 10, 2015 DocumentDB - Un vistazo
general

Integration User Group Howard Edidin November 9, 2015 Azure DocumentDB for
Healthcare Integration – Part
2

Integration User Group Howard Edidin October 5, 2015 Azure DocumentDB for
Healthcare Integration

DX Italy - #TecHeroes Alessandro Melchiori October 2, 2015 #TecHeroes - DocumentDB

Microsoft Cloud Show -
Podcast

Andrew Liu September 30, 2015 Episode 099 - Azure
DocumentDB with Andrew
Liu

.NET Rocks! - Podcast Ryan Crawcour September 29, 2015 Data on DocumentDB with
Ryan CrawCour

Data Exposed Ryan Crawcour September 28, 2015 What's New with Azure
DocumentDB Since GA

The Azure Podcast Cale Teeter September 17, 2015 Episode 94: azpodcast.com
re-architecture

https://www.youtube.com/channel/UCDRlI2E4z5qmHsBXTrFOE2Q
https://www.youtube.com/watch?v=Hw7hDYoChNI
https://channel9.msdn.com/Shows/Azure-Friday/AzureFridayNewinDocumentDB
https://channel9.msdn.com/Blogs/Open/From-MEAN-to-DEAN-in-Azure-with-Bitnami-VM-Scale-Sets-and-DocumentDB
https://www.youtube.com/watch?v=xKttEwXv_bs
http://www.integrationusergroup.com/analyze-visualize-non-relational-data-documentdb-power-bi/
http://azpodcast.azurewebsites.net/post/Episode-110-Using-DocumentDB-Search
https://channel9.msdn.com/Series/Modern-Applications/Take-a-modern-approach-to-data-in-your-apps
https://channel9.msdn.com/Series/Ninja-Tips/31-NinjaTips-Desarrollo-DocumentDB-1-Vistazo-general
http://www.integrationusergroup.com/azure-documentdb-for-healthcare-integration-part-2/
http://www.integrationusergroup.com/?event=azure-documentdb-and-biztalk
https://channel9.msdn.com/Shows/TecHeroes/TecHeroes-DocumentDB
http://www.microsoftcloudshow.com/podcast/Episodes/099-azure-documentdb-with-andrew-liu
https://www.dotnetrocks.com/?show=1197
https://channel9.msdn.com/Shows/Data-Exposed/Whats-New-with-Azure-DocumentDB-Since-GA
http://azpodcast.azurewebsites.net/post/Episode-94-azpodcastcom-re-architecture

Cloud Cover Ryan Crawcour September 4, 2015 Episode 185: DocumentDB
Updates with Ryan
CrawCour

CodeChat 033 Greg Doerr July 28, 2015 Greg Doerr on Azure
DocumentDB

NoSql Central King Wilder May 25, 2015 Golf Tracker - A video
overview on how to build a
web application on top of
AngularJS, WebApi 2, and
DocumentDB.

In-Memory Technologies
PASS Virtual Chapter

Stephen Baron May 25, 2015 Hello DocumentDB

Data Exposed Ryan Crawcour April 8, 2015 DocumentDB General
Availibility and What's New!

Data Exposed Andrew Liu March 17, 2015 Java SDK for DocumentDB

#DevHangout Gustavo Alzate Sandoval March 11, 2015 DocumentDB, la base de
datos NoSql de Microsoft
Azure

Data Architecture Virtual
Chapter PASS

Ike Ellis February 25, 2015 Introduction to
DocumentDB

SHOWSHOW SPEAKERSPEAKER DATEDATE EPISODEEPISODE

Online classes

LEARNING PARTNERLEARNING PARTNER DESCRIPTIONDESCRIPTION

Microsoft Virtual AcademyMicrosoft Virtual Academy offers you training from the
people who help build Azure DocumentDB.

PluralsightPluralsight is a key Microsoft partner offering Azure training.
If you are an MSDN subscriber, use your benefits to access
Microsoft Azure training.

OpsGilityOpsGility provides deep technical training on Microsoft
Azure. Get instructor-led training on-site or through a remote
classroom by their industry-acknowledged trainers.

https://channel9.msdn.com/Shows/Cloud+Cover/Episode-185-DocDB-Updates-with-Ryan-CrawCour
https://channel9.msdn.com/Shows/codechat/033
http://www.nosqlcentral.net/Story/Details/videos/kahanu/1-documentdb-golf-tracker-overview
https://www.youtube.com/watch?v=itFXQCd9-dI
https://channel9.msdn.com/Shows/Data-Exposed/DocumentDB-General-Availability-and-Whats-New
https://channel9.msdn.com/Shows/Data-Exposed/Java-SDK-for-DocumentDB
https://www.youtube.com/watch?v=8Ud3jB8KOBA
https://www.youtube.com/watch?v=7BQYdFUkz6s
https://mva.microsoft.com/en-US/training-courses/deploying-web-apps-to-azure-app-service-16629
https://mva.microsoft.com/en-US/training-courses/deploying-web-apps-to-azure-app-service-16629
http://www.pluralsight.com/courses/azure-documentdb-introduction
http://www.pluralsight.com/courses/azure-documentdb-introduction
https://www.opsgility.com/courses/player/introduction_to_azure_documentdb
https://www.opsgility.com/courses/player/introduction_to_azure_documentdb

Discussion

Twitter

Online forums

FORUM PROVIDERFORUM PROVIDER DESCRIPTIONDESCRIPTION

A language-independent collaboratively edited question and
answer site for programmers. Follow our tag: azure-
documentdb

A good place for support and feedback on Microsoft Azure
features and services like Web Sites, DocumentDB, etc.

Contact the team

Open source projects

SDKs

PLATFORMPLATFORM GITHUBGITHUB PACKAGEPACKAGE

Node.js azure-documentdb-node npm

Java azure-documentdb-java Maven

Python azure-documentdb-python PyPI

Other projects

NAMENAME GITHUBGITHUB WEBSITEWEBSITE

Documentation azure-content Documentation website

Follow us on twitter @DocumentDB and stay up to date with the latest conversation on the #DocumentDB hashtag.

Do you need technical help? Have questions? Wondering whether NoSQL is a good fit for you? You can schedule a

1:1 chat directly with the DocumentDB engineering team. You can also shoot us an e-mail or tweet us at

@DocumentDB.

These projects are actively developed by the Azure DocumentDB team in collaboration with our open source

community.

https://twitter.com/DocumentDB
https://twitter.com/hashtag/DocumentDB
http://stackoverflow.com/questions/tagged/azure-documentdb
http://stackoverflow.com/questions/tagged/azure-documentdb
http://go.microsoft.com/fwlink/?LinkId=631655
http://www.askdocdb.com/
mailto:askdocdb@microsoft.com
https://twitter.com/DocumentDB
https://github.com/Azure/azure-documentdb-node
https://www.npmjs.com/package/documentdb
https://github.com/Azure/azure-documentdb-java
http://search.maven.org/#search%7Cga%7C1%7Ca%3A%22azure-documentdb%22
https://github.com/Azure/azure-documentdb-python
https://pypi.python.org/pypi/pydocumentdb
https://github.com/Azure/azure-content/tree/master/articles/documentdb
https://azure.microsoft.com/documentation/services/documentdb/

Hadoop Connector azure-documentdb-hadoop Maven

Data migration tool azure-documentdb-datamigrationtool Microsoft download center

NAMENAME GITHUBGITHUB WEBSITEWEBSITE

DocumentDB Wizards

WIZARDWIZARD PICTUREPICTURE

Allan Mitchell

Jen Stirrup

Lenni Lobel

Mihail Mateev

DocumentDB Wizards are community leaders who’ve demonstrated an exemplary commitment to helping others

get the most out of their experience with Azure DocumentDB. They share their exceptional passion, real-world

knowledge, and technical expertise with the community and with the DocumentDB team.

https://github.com/Azure/azure-documentdb-hadoop
http://search.maven.org/#search%7Cga%7C1%7Ca%3A%22azure-documentdb-hadoop%22
https://github.com/Azure/azure-documentdb-datamigrationtool
http://www.microsoft.com/en-us/download/details.aspx?id=46436
https://twitter.com/allansqlis
https://twitter.com/allansqlis
https://twitter.com/jenstirrup
https://twitter.com/jenstirrup
https://twitter.com/lennilobel
https://twitter.com/lennilobel
https://twitter.com/mihailmateev
https://twitter.com/mihailmateev

Larry Maccherone

Howard Edidin

Santosh Hari

Matías Quaranta

WIZARDWIZARD PICTUREPICTURE

Want to become a DocumentDB Wizard? While there is no benchmark for becoming a DocumentDB Wizard, some

of the criteria we evaluate include the impact of a nominee’s contributions to online forums such as StackOverflow

and MSDN; wikis and online content; conferences and user groups; podcasts, Web sites, blogs and social media;

and articles and books. You can nominate yourself or someone else by sending us an email.

https://twitter.com/lmaccherone
https://twitter.com/lmaccherone
https://twitter.com/hsedidin
https://twitter.com/hsedidin
https://twitter.com/_s_hari
https://twitter.com/_s_hari
https://twitter.com/ealsur
https://twitter.com/ealsur
mailto:askdocdb@microsoft.com

	Cover Page
	Overview
	What is DocumentDB?
	Core concepts
	Global distribution
	Scenarios
	Common use cases
	Going social with DocumentDB
	Multi-tenancy

	Get Started
	Write your first app
	.NET console app
	.NET Core console app
	Node.js console app
	C++ console app

	Build a web app
	.NET web app
	Node.js web app
	Java web app
	Python Flask web app

	Develop Locally
	FAQ

	How To
	Plan
	Storage and performance
	Partitioning and scaling
	Consistency
	NoSQL vs SQL

	Manage
	Import your data
	Model your data
	Use geospatial data
	Develop for multi-regions
	Expire data automatically
	Customize your indexes
	Secure access to data
	Back up and restore
	Performance levels
	Resource quotas
	Increase quotas
	Request units
	Azure CLI and Azure Resource Manager
	Firewall support
	Supercharge your account

	Develop
	SQL query
	Stored procedures, triggers, and UDFs
	Performance testing
	Performance tips
	DocumentDB for MongoDB developers
	Protocol support for MongoDB
	Create account
	Connect to your account
	Use MongoChef
	Protocol support samples

	Use the portal
	Create a database account
	Create a collection
	Add global replication
	Add and edit documents
	Query documents
	Manage an account
	Monitor an account
	Manage scripts
	Troubleshooting tips

	Integrate
	Deploy a website with Azure App Service
	Application logging with Logic Apps
	Bind to Azure Functions
	Analyze data with Hadoop
	Integrate with Azure Search
	Move data with Azure Data Factory
	Analyze real-time data with Azure Stream Analytics
	Get notifications with Logic Apps
	Process sensor data in real time
	Visualize your data with Power BI

	Reference
	Java SDK
	.NET SDK
	.NET Core SDK
	.NET samples
	Node.js SDK
	Node.js samples
	Python SDK
	Python samples
	SQL
	SQL grammar cheat sheet
	REST
	REST Resource Provider

	Resources
	Pricing
	MSDN forum
	Stack Overflow
	Videos
	Service updates
	Community portal
	Query Playground
	Schema agnostic indexing paper
	Data consistency explained through baseball
	Book: Using Microsoft Azure DocumentDB in a Node.js Application
	Learning path

